RESUMEN
The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.
RESUMEN
Investigating coherent acoustic vibrations in nanostructured materials provides fundamental insights into optomechanical responses and microscopic energy flow. Extensive measurements of vibrational dynamics have been performed for a wide variety of nanoparticles and nanoparticle assemblies. However, virtually all of them show that only the dilation modes are launched after laser excitations, and the acoustic bending and torsional motions, which are commonly observed in photoexcited chemical bonds, are absent. Unambiguous identification and refined characterization of these "missing" modes have been a long-standing issue. In this report, we investigated the acoustic vibrational dynamics of individual Au nanoprisms on free-standing graphene substrates using an ultrafast high-sensitivity dark-field imaging approach in four-dimensional transmission electron microscopy. Following optical excitations, we observed low-frequency multiple-mode oscillations and higher superposition amplitudes at nanoprism corners and edges on the subnanoparticle level. In combination with finite-element simulations, we determined that these vibrational modes correspond to out-of-plane bending and torsional motions, superimposed by an overall tilting effect of the nanoprisms. The launch and relaxation processes of these modes are highly pertinent to substrate effects and nanoparticle geometries. These findings contribute to the fundamental understanding about acoustic dynamics of individual nanostructures and their interaction with substrates.
RESUMEN
Starch synthesis in maize endosperm adheres to the basipetal sequence from the apex downwards. However, the mechanism underlying nonuniformity among regions of the endosperm in starch accumulation and its significance is poorly understood. Here, we examined the spatiotemporal transcriptomes and starch accumulation dynamics in apical (AE), middle (ME), and basal (BE) regions of endosperm throughout the filling stage. Results demonstrated that the BE had lower levels of gene transcripts and enzymes facilitating starch synthesis, corresponding to incomplete starch storage at maturity, compared with AE and ME. Contrarily, the BE showed abundant gene expression for genetic processing and slow progress in physiological development (quantified by an index calculated from the expression values of development progress marker genes), revealing a sustained cell vitality of the BE. Further analysis demonstrated a significant parabolic correlation between starch synthesis and physiological development. An in-depth examination showed that the BE had more active signaling pathways of IAA and ABA than the AE throughout the filling stage, while ethylene showed the opposite pattern. Besides, SNF1-related protein kinase1 (SnRK1) activity, a regulator for starch synthesis modulated by trehalose-6-phosphate (T6P) signaling, was kept at a lower level in the BE than the AE and ME, corresponding to the distinct gene expression in the T6P pathway in starch synthesis regulation. Collectively, the findings support an improved understanding of the timing of starch synthesis and cell vitality in regions of the endosperm during development, and potential regulation from hormone signaling and T6P/SnRK1 signaling.
Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Almidón , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Endospermo/metabolismo , Endospermo/genética , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismoRESUMEN
INTRODUCTION: This study evaluated the influence of facial width on the perception of lip protrusion and investigated the concordance between 2-dimensional (2D) profile images and 3-dimensional (3D) video clips in assessing lip protrusion. METHODS: An Asian female standard head model was created using 3D modeling software. Eight head models were constructed by modifying the standard head model in terms of facial width (broad, neutral, and slim) and lip protrusion (retrusive, straight, and protrusive). Overall, 97 Asian raters rated the lip protrusion from the 2D profiles and 3D rotation video clips of the 9 models. RESULTS: No significant differences were found in the perception of lip protrusion in terms of sex, age, or occupation. Compared with the 2D profiles, the 3D video clips were rated as more protrusive in 8 of the 9 head models, with the retrusive broad, retrusive neutral, straight broad, and straight slim faces showing statistical significance (P <0.01). The rating is significantly higher in slim faces than in broad faces across the 3 groups of 2D profiles (P <0.01). For 3D video clips, the rating was higher in slim faces than in broad faces in all 3 groups, whereas differences were significant in the straight and protrusive groups only (P <0.01). CONCLUSIONS: In this study, 3D video clips were more sensitive to the perception of lip protrusion than were 2D profiles to some extent. The lips were rated relatively more protrusive in a slim face than in a broad face. Therefore, the relationship between facial width and lip protrusion should be considered in orthodontic treatment goals and treatment plans.
Asunto(s)
Cara , Labio , Humanos , Femenino , Labio/anatomía & histología , Programas Informáticos , Pueblo Asiatico , PercepciónRESUMEN
BACKGROUND: Teeth identification has a pivotal role in the dental curriculum and provides one of the important foundations of clinical practice. Accurately identifying teeth is a vital aspect of dental education and clinical practice, but can be challenging due to the anatomical similarities between categories. In this study, we aim to explore the possibility of using a deep learning model to classify isolated tooth by a set of photographs. METHODS: A collection of 5,100 photographs from 850 isolated human tooth specimens were assembled to serve as the dataset for this study. Each tooth was carefully labeled during the data collection phase through direct observation. We developed a deep learning model that incorporates the state-of-the-art feature extractor and attention mechanism to classify each tooth based on a set of 6 photographs captured from multiple angles. To increase the validity of model evaluation, a voting-based strategy was applied to refine the test set to generate a more reliable label, and the model was evaluated under different types of classification granularities. RESULTS: This deep learning model achieved top-3 accuracies of over 90% in all classification types, with an average AUC of 0.95. The Cohen's Kappa demonstrated good agreement between model prediction and the test set. CONCLUSIONS: This deep learning model can achieve performance comparable to that of human experts and has the potential to become a valuable tool for dental education and various applications in accurately identifying isolated tooth.
Asunto(s)
Aprendizaje Profundo , Diente , Humanos , Diente/anatomía & histología , Diente/diagnóstico por imagen , Fotografía Dental/métodosRESUMEN
Carbon nitride has been extensively used as a visible-light photocatalyst, but it has the disadvantages of a low specific surface area, rapid electron-hole recombination, and relatively low light absorbance. In this study, single-atom Ag was successfully anchored on ultrathin carbon nitride (UTCN) via thermal polymerization, the catalyst obtained is called AgUTCN. The Ag hardly changed the carbon nitride's layered and porous physical structure. AgUTCN exhibited efficient visible-light photocatalytic performances in the degradation of various recalcitrant pollutants, eliminations of 85% were achieved by visible-light irradiation for 1 hr. Doping with Ag improved the photocatalytic performance of UTCN by narrowing the forbidden band gap from 2.49 to 2.36 eV and suppressing electron-hole pair recombination. In addition, Ag doping facilitated O2 adsorption on UTCN by decreasing the adsorption energy from -0.2 to -2.22 eV and favored the formation of O2·-. Electron spin resonance and radical-quenching experiments showed that O2·- was the major reactive species in the degradation of Acetaminophen (paracetamol, APAP).
Asunto(s)
Acetaminofén , Contaminantes Ambientales , Nitrilos/química , Carbono , CatálisisRESUMEN
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Asunto(s)
Curcumina , Neoplasias , Humanos , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Suplementos DietéticosRESUMEN
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Asunto(s)
Neoplasias Pancreáticas , ARN Largo no Codificante , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , ARN Circular/genética , ARN Largo no Codificante/genética , Neoplasias PancreáticasRESUMEN
BACKGROUND: High-resolution computed tomography (HRCT), as the main tool for monitoring idiopathic pulmonary fibrosis (IPF), is characterized by subjective variability among radiologists and insensitivity to subtle changes. Recently, a few studies have aimed to decrease subjective bias by assessing the severity of IPF using computer software, i.e., Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER). However, these studies had diverse research directions. In this review, we systematically assess the effect of CALIPER in the management of IPF. METHODS: A systematic review was conducted through a search of published studies in PubMed, Web of Science, Cochrane, Embase, Scopus, and CNKI databases from database inception through February 28, 2022. The methodological quality would be evaluated by using Methodological Index for Non-Randomized Studies (MINORS). Narrative synthesis summarized findings by participant characteristics, study design, and associations with outcomes. RESULTS: Ten studies were included. They evaluated the relationship between CALIPER-derived parameters and pulmonary function test (PFT) and mortality. CALIPER-derived parameters showed a significant correlation with PFT and mortality. Two studies reported that CALIPER could be used to stratify outcomes. CONCLUSION: CALIPER-derived parameters can be used to evaluate prognosis and mortality. CALIPER-derived parameters combined with composite physiologic index (CPI) or Gender-Age-Physiology (GAP) could help clinicians implement targeted management by refining prognostic stratification. However, research has been constrained by small number of retrospective investigations and sample sizes. Therefore, it is essential to design prospective controlled studies and establish the staging system by CALIPER-derived parameters and combining them with CPI, FVC, or GAP. CLINICAL RELEVANCE STATEMENT: It is beneficial for clinic to provide objective, sensitive, and accurate indicators of disease progression. It also helps the clinic to develop individualized treatment plans based on the stage of disease progression and provides evaluation of efficacy in drug trials. KEY POINTS: ⢠Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) is a quantitative CT analysis software that can be used to evaluate the progression of disease on CT. ⢠The CALIPER-derived vessel-related structure shows great performance in the management of idiopathic pulmonary fibrosis. ⢠CALIPER-derived parameters combined with composite physiologic index or Gender-Age-Physiology can be used to refine prognostic stratification.
Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Pulmón/patología , Fibrosis Pulmonar Idiopática/patología , Pronóstico , Computadores , Progresión de la EnfermedadRESUMEN
Byproduct formation (chlorate, bromate, organic halogen, etc.) during sulfate radical (SO4â¢-)-based processes like ultraviolet/peroxymonosulfate (UV/PMS) has aroused widespread concern. However, hypohalous acid (HOCl and HOBr) can form via two-electron transfer directly from PMS, thus leading to the formation of organic halogenated byproducts as well. This study found both PMS alone and UV/PMS can increase the toxicity to mammalian cells of wastewater, while the UV/H2O2 decreased the toxicity. Cytotoxicity of two wastewater samples increased from 5.6-8.3 to 15.7-29.9 mg-phenol/L, and genotoxicity increased from 2.8-3.1 to 5.8-12.8 µg 4-NQO/L after PMS treatment because of organic halogen formation. Organic halogen formation from bromide rather than chloride was found to dominate the toxicity increase. The SO4â¢--based process UV/PMS led to the formation of both organic halogen and inorganic bromate and chlorate. However, because of the very low concentration (<20 µg/L) and relatively low toxicity of bromate and chlorate, contributions of inorganic byproducts to toxicity increase were negligible. PMS would not form chlorate and bromate, but it generated a higher concentration of total organic halogen, thus leading to a more toxic treated wastewater than UV/PMS. UV/PMS formed less organic halogen and toxicity because of the destruction of byproducts by UV irradiation and the removal of byproduct precursors. Currently, many studies focused on the byproducts bromate and chlorate during SO4â¢--based oxidation processes. This work revealed that the oxidant PMS even needs more attention because it caused higher toxicity due to more organic halogen formation.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Oxidantes , Peróxido de Hidrógeno , Bromatos/toxicidad , Aguas Residuales , Cloratos , Contaminantes Químicos del Agua/análisis , Peróxidos , Oxidación-Reducción , Halógenos , MamíferosRESUMEN
Silicone rubber (SR) is widely used in the food processing industry due to its excellent physical and chemical properties. However, due to the differences in SR product production formulas and processes, the quality of commercially available SR products varies greatly, with chemical and biological hazard potentials. Residual chemicals in SR, such as siloxane oligomers and 2,4-dichlorobenzoic acid, are non-intentionally added substances, which may migrate into food during processing so the safe use of SR must be guaranteed. Simultaneously, SR in contact with food is susceptible to pathogenic bacteria growing and biofilm formation, like Cronobacter sakazakii, Staphylococcus aureus, Salmonella enteritidis, and Listeria monocytogenes, posing a food safety risk. Under severe usage scenarios such as high-temperature, high-pressure, microwave, and freezing environments with long-term use, SR products are more prone to aging, and their degradation products may pose potential food safety hazards. Based on the goal of ensuring food quality and safety to the greatest extent possible, this review suggests that enterprises need to prepare high-quality food-contact SR products by optimizing the manufacturing formula and production process, and developing products with antibacterial and antiaging properties. The government departments should establish quality standards for food-contact SR products and conduct effective supervision. Besides, the reusable SR products should be cleaned by consumers immediately after use, and the deteriorated products should be replaced as soon as possible.
Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Elastómeros de Silicona/farmacología , Manipulación de Alimentos , Industria de Procesamiento de AlimentosRESUMEN
Cervical cancer is one of the most common female malignancies. Human papillomaviruses (HPV) are the main causative agents of virtually all cervical carcinomas. Nevertheless, emerging evidence has demonstrated that a small proportion of cervical cancer patients are HPV negative. Long noncoding RNAs (lncRNAs) have been identified to play a crucial role in cervical cancer development. Here, this review describes the incidence and development of HPV-negative cervical cancer. Moreover, HPV-negative cervical cancers are more likely diagnosed at non-squamous type, older ages, more advanced stage and metastases, and associated with poorer prognosis as compared to HPV-positive cervical cancer. Furthermore, the significant role and functions of lncRNAs underlying HPV-negative cervical cancer is clarified.
Asunto(s)
Infecciones por Papillomavirus , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Apoptosis , Femenino , Humanos , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genéticaRESUMEN
OIP5-AS1, a conserved lncRNA, has been reported to be involved in several biological and pathological processes, including oncogenesis. OIP5-AS1 exerts its oncogenic or antitumor functions via regulation of different miRNAs in various cancer types. In this review, we describe the dysregulation of OIP5-AS1 expression in a variety of human cancers. Moreover, we discuss the multiple functions of OIP5-AS1 in cancer, including in proliferation, apoptosis, autophagy, ferroptosis, cell cycle, migration, metastasis, invasion, epithelial to mesenchymal transition, angiogenesis, cancer stem cells and drug resistance. Furthermore, we provide a future perspective for OIP5-AS1 research. We conclude that targeting OIP5-AS1 might be a promising cancer therapy approach.
Asunto(s)
MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
In the last decade, there has been a rapid expansion in tumor targeted therapy using mesenchymal stem cells (MSCs) based on their unique tropism towards cancer cells. Despite similarities in morphology, immunophenotype, and differential potent in vitro, MSCs originated from different tissues do not necessarily have equivalent biological behaviors. It is important to screen the most chemotactic MSCs to cancer cells. In this study, different MSCs were isolated from various human tissues including adipose, umbilical cord, amniotic membrane, and chorion. The chemotaxis of human MSCs to cervical cancer cells was measured by CCK-8, ELISA and Transwell invasion assays. Western blotting was performed to explore the underlying mechanisms. MSCs derived from distinct sources can be differently recruited to cervical cancer cells, among which chorion-derived MSC (CD-MSC) possessed the strongest tropic capacity. CXCL12 was found to be highly secreted by cervical cancer cells, in parallel with the expression of CXCR4 in all MSCs. CD-MSC displayed the highest level of CXCR4. These results indicated that CXCL12/CXCR4 pathway contributed to the different chemotaxis to cervical cancer cells of each MSCs. This study proposed that CD-MSC with the highest CXCR4 expression is a promising therapeutic vehicle for targeted therapy in cervical cancer.
Asunto(s)
Células Madre Mesenquimatosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Quimiotaxis , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Apoptosis , Cordón UmbilicalRESUMEN
We revisit the possibility that dark matter is composed of stable scalar glueballs of a confining dark SU(3) gauge theory coupled only to gravity. The relic abundance of dark glueballs is studied for the first time in a thermal effective theory accounting for strong-coupling dynamics. An important ingredient of our analysis is the use of an effective potential for glueballs that is fitted by lattice simulations. We predict the relic abundance to be in the range 0.12ζ_{T}^{-3}Λ/(137.9 eV)â²Ωh^{2}â²0.12ζ_{T}^{-3}Λ/(82.7 eV), with Λ being the confinement scale, ζ_{T} the visible-to-dark sector temperature ratio, and the uncertainty is coming from the fit to lattice data. This prediction is an order of magnitude smaller than the existing glueball abundance results in the literature. Our framework can be easily generalized to different gauge groups and modified cosmological histories paving the way toward consistent exploration of strongly coupled dark sectors and their cosmological implications.
RESUMEN
Reported herein is a photoredox-catalyzed amination of o-hydroxyarylenaminones with tert-butyl ((perfluoropyridin-4-yl)oxy)carbamate, a versatile amidyl-radical precursor developed in our laboratory. This work establishes a new cascade pathway for the assembly of a range of 3-aminochromones under mild conditions. Downstream transformations of the obtained 3-aminochromones to construct diverse amino pyrimidines greatly broaden the applications of this photocatalyzed protocol.
Asunto(s)
Cromonas , Aminación , CatálisisRESUMEN
A phosphine-mediated, well-designed Morita-Baylis-Hillman-type/Wittig cascade for the rapid assembly of a quinolinone framework from benzaldehyde derivatives is developed for the first time. By rationally combining I2/NIS-mediated cyclization, biologically relevant 3-(benzopyrrole/furan-2-yl) quinolinones were facilely synthesized in a one-pot process by starting from 3-styryl-quinolinones bearing an o-hydroxy/amino group, significantly expanding the chemical space of this privileged skeleton. Further utility of this protocol is illustrated by successfully performing this transformation in a catalytic manner through in situ reduction of phosphine oxide by phenylsilane.
Asunto(s)
Fosfinas , Quinolonas , Ciclización , FuranosRESUMEN
A growing amount of evidence suggests that ubiquitination and deubiquitination of programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) play crucial roles in the regulation of PD-1 and PD-L1 protein stabilization and dynamics. PD-1/PD-L1 is a major coinhibitory checkpoint pathway that modulates immune escape in cancer patients, and its engagement and inhibition has significantly reshaped the landscape of tumor clearance. The abnormal ubiquitination and deubiquitination of PD-1/PD-L1 influence PD-1/PD-L1-mediated immunosuppression. In this review, we describe the ubiquitination- and deubiquitination-mediated modulation of PD-1/PD-L1 signaling through a variety of E3 ligases and deubiquitinating enzymes (DUBs). Moreover, we briefly expound on the anticancer potential of some agents that target related E3 ligases, which further modulate the ubiquitination of PD-1/PD-L1 in cancers. Therefore, this review reveals the development of a highly promising therapeutic approach for cancer immunotherapy by targeting PD-1/PD-L1 ubiquitination.
Asunto(s)
Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/metabolismo , Ubiquitinación , Animales , Antígeno B7-H1/genética , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/genéticaRESUMEN
Multiple studies have confirmed that programmed cell death 1/programmed cell death ligand-1 (PD-1/PD-L1) and immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 play pivotal roles in the treatment of numerous tumors. Patients suffering from cancer are provided hope in the form of immunotherapy. In this review, we discuss the finding that high PD-L1 expression is associated with poor clinical outcomes in prostate cancer patients. Some molecules exert their antitumor effects by downregulating PD-L1 expression in prostate cancer. Additionally, we discuss and summarize the important roles played by anti-PD-1/PD-L1 immunotherapy and its combination with other drugs, including chemotherapy and vaccines, in the treatment of prostate cancer.
Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/terapia , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/genética , Terapia Combinada , Desarrollo de Medicamentos , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Interleucina-6/metabolismo , Quinasas Janus/metabolismo , Masculino , Terapia Molecular Dirigida , Pronóstico , Receptor de Muerte Celular Programada 1/genética , Neoplasias de la Próstata/etiología , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Resultado del TratamientoRESUMEN
BACKGROUND: Our research was designed to decide whether the application of C2 pars screws is an alternative choice for patients with OPLL involving the C2 segment. METHODS: A total of 40 patients who underwent cervical laminectomy with fusion (LF) from C2 to C6 for OPLL were reviewed. Among them, C2 pedicle screws were placed in 23 patients, who were the pedicle group, and C2 pars screws were placed in 17 patients, who were the pars group. The screw placement and vertebral artery (VA) anatomy presented by standard CT. General clinical characteristics and health-related outcomes were evaluated and compared preoperatively and during the follow-up period. RESULTS: The Pars group tended to have a shorter operation duration and less blood loss than the pedicle group (operation time: 115.29 ± 28.75 vs 133.48 ± 26.22, p = 0.044; blood loss: 383.53 ± 116.19 vs 457.83 ± 145.45, p = 0.039). Operation time and blood loss were both independently related to the pars group (operation time: OR = 0.966, p = 0.021; blood loss: OR = 0.993, p = 0.046). The idealization and acceptability of C2 screws in the pars group exceeded those in the pedicle group (100% vs 91.3%). However, no statistically obvious variation in the included complications or health-related outcomes between the pedicle and pars groups was observed. CONCLUSION: In the treatment of patients with OPLL involving the C2 segment, the application of C2 pars screws is an alternative choice, which is not only safer but also reduces the amount of blood loss, shortens the operation time and obtains a more ideal screw placement.