Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7795): 392-396, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025037

RESUMEN

Extensive efforts have been made to harvest energy from water in the form of raindrops1-6, river and ocean waves7,8, tides9 and others10-17. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects-as seen in characterizations of the charge generation and transfer that occur at solid-liquid1-4 or liquid-liquid5,18 interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.

2.
Proc Natl Acad Sci U S A ; 120(31): e2307977120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487062

RESUMEN

Contact electrification (CE) in water has attracted much attention, owing to its potential impacts on the chemical reactions, such as the recent discovery of spontaneous generation of hydrogen peroxide (H2O2) in water microdroplets. However, current studies focus on the CE of bulk water, the measurement of CE between micrometer-size water droplets is a challenge and its mechanism still remains ambiguous. Here, a method for quantifying the amount of charge carried by the water microdroplets produced by ultrasonic atomization is proposed. In the method, the motions of water microdroplets in a uniform electric field are observed and the electrostatic forces on the microdroplets are calculated based on the moving speed of the microdroplets. It is revealed that the charge transfer between water microdroplets is size-dependent. The large microdroplets tend to be positively charged while the small microdroplets tend to receive negative charges, implying that the negative charges transfer from large microdroplets to the small microdroplets during ultrasonic atomization. Further, a theoretical model for microdroplets charging is proposed, in which the curvature-induced surface potential/energy difference is suggested to be responsible for the charge transfer between microdroplets. The findings show that the electric field strength between two microdroplets with opposite charges during separation is strong enough to convert OH‒ to OH*, providing evidence for the CE-induced spontaneous generation of H2O2 in water microdroplets.

3.
Proc Natl Acad Sci U S A ; 120(25): e2221956120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307491

RESUMEN

Investigating coherent acoustic vibrations in nanostructured materials provides fundamental insights into optomechanical responses and microscopic energy flow. Extensive measurements of vibrational dynamics have been performed for a wide variety of nanoparticles and nanoparticle assemblies. However, virtually all of them show that only the dilation modes are launched after laser excitations, and the acoustic bending and torsional motions, which are commonly observed in photoexcited chemical bonds, are absent. Unambiguous identification and refined characterization of these "missing" modes have been a long-standing issue. In this report, we investigated the acoustic vibrational dynamics of individual Au nanoprisms on free-standing graphene substrates using an ultrafast high-sensitivity dark-field imaging approach in four-dimensional transmission electron microscopy. Following optical excitations, we observed low-frequency multiple-mode oscillations and higher superposition amplitudes at nanoprism corners and edges on the subnanoparticle level. In combination with finite-element simulations, we determined that these vibrational modes correspond to out-of-plane bending and torsional motions, superimposed by an overall tilting effect of the nanoprisms. The launch and relaxation processes of these modes are highly pertinent to substrate effects and nanoparticle geometries. These findings contribute to the fundamental understanding about acoustic dynamics of individual nanostructures and their interaction with substrates.

4.
Chem Rev ; 123(21): 12105-12134, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37871288

RESUMEN

With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Suministros de Energía Eléctrica , Electrónica , Tecnología
5.
Chem Soc Rev ; 53(9): 4349-4373, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38619095

RESUMEN

Contact-electro-catalysis (CEC) is an emerging field that utilizes electron transfer occurring at the liquid-solid and even liquid-liquid interfaces because of the contact-electrification effect to stimulate redox reactions. The energy source of CEC is external mechanical stimuli, and solids to be used are generally organic as well as in-organic materials even though they are chemically inert. CEC has rapidly garnered extensive attention and demonstrated its potential for both mechanistic research and practical applications of mechanocatalysis. This review aims to elucidate the fundamental principle, prominent features, and applications of CEC by compiling and analyzing the recent developments. In detail, the theoretical foundation for CEC, the methods for improving CEC, and the unique advantages of CEC have been discussed. Furthermore, we outline a roadmap for future research and development of CEC. We hope that this review will stimulate extensive studies in the chemistry community for investigating the CEC, a catalytic process in nature.

6.
Nano Lett ; 24(17): 5277-5283, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624178

RESUMEN

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.

7.
J Am Chem Soc ; 146(9): 6125-6133, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38323980

RESUMEN

Chemical analysis of ions and small organic molecules in liquid samples is crucial for applications in chemistry, biology, environmental sciences, and health monitoring. Mainstream electrochemical and chromatographic techniques often suffer from complex and lengthy sample preparation and testing procedures and require either bulky or expensive instrumentation. Here, we combine triboelectrification and charge transfer on the surface of electrical insulators to demonstrate the concept of triboelectric spectroscopy (TES) for chemical analysis. As a drop of the liquid sample slides along an insulating reclined plane, the local triboelectrification of the surface is recorded, and the charge pattern along the sample trajectory is used to build a fingerprinting of the charge transfer spectroscopy. Chemical information extracted from the charge transfer pattern enables a new nondestructive and ultrafast (<1 s) tool for chemical analysis. TES profiles are unique, and through an automated identification, it is possible to match against standard and hence detect over 30 types of common salts, acids, bases and organic molecules. The qualitative and quantitative accuracies of the TES methodology is close to 93%, and the detection limit is as low as ppb levels. Instruments for TES chemical analysis are portable and can be further miniaturized, opening a path to in situ and rapid chemical detection relying on inexpensive, portable low-tech instrumentation.

8.
J Am Chem Soc ; 146(17): 12087-12099, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647488

RESUMEN

Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.


Asunto(s)
Fluorocarburos , Agua , Fluorocarburos/química , Agua/química , Ratones , Animales , Neoplasias/tratamiento farmacológico , Radicales Libres/química , Humanos , Radical Hidroxilo/química , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología
9.
Small ; 20(10): e2307119, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875768

RESUMEN

Shelter forests (or shelter-belts), while crucial for climate regulation, lack monitoring systems, e.g., Internet of Things (IoT) devices, but their abundant wind energy can potentially power these devices using the trees as mounting points. To harness wind energy, an omnidirectional fluid-induced vibration triboelectric nanogenerator (OFIV-TENG) has been developed. The device is installed on shelter forest trees to harvest wind energy from all directions, employing a fluid-induced vibration (FIV) mechanism (fluid-responding structure) that can capture and use wind energy, ranging from low wind speeds (vortex vibration) to high wind speeds (galloping). The rolling-bead triboelectric nanogenerator (TENG) can efficiently harvest energy while minimizing wear and tear. Additionally, the usage of double electrodes results in an effective surface charge density of 21.4 µC m-2 , which is the highest among all reported rolling-bead TENGs. The collected energy is utilized for temperature and humidity monitoring, providing feedback on the effect of climate regulation in shelter forests, alarming forest fires, and wireless wind speed warning. In general, this work provides a promising and rational strategy, using natural resources like trees as the supporting structures, and shows broad application prospects in efficient energy collection, wind speed warning, and environmentally friendliness.

10.
Small ; 20(23): e2310023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38161251

RESUMEN

With the continuous rise of environmental pollution and energy crisis, the global energy revolution is risen. Development of renewable blue energy based on the emerging promising triboelectric nanogenerators (TENG) has become an important direction of future energy development. The solid-liquid contact triboelectric nanogenerator (TENG) has the advantages of flexible structure, easy manufacture, and long-term stability, which makes it easier to integrate and achieve large-scale conversion of wave mechanical energy. However, the electric power output is still not large enough, which limits its practical applications. In this work, a nanocomposite electret layer enhanced solid-liquid contact triboelectric nanogenerator (E-TENG) is proposed for water wave energy harvesting, which can effectively improve the electric output and achieve real-time power supply of wireless sensing. Through introducing a nanocomposite electret layer into flexible multilayer solid-liquid contact TENG, higher power output is achieved. The E-TENG (active size of 50 mm × 49 mm) shows desired output performance, a power density of 521 mW m-2. The generated electric energy can drive wireless temperature sensing by transmitting wireless signals carrying detection information at the period of ˂5.5 min. This research greatly improves the electric output and provides a solid basis for the industrialization of TENG in blue energy.

11.
Small ; 20(2): e2305303, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658494

RESUMEN

Tribovoltaic nanogenerators (TVNG) represent a fantastic opportunity for developing low-frequency energy harvesting and self-powered sensing, by exploiting their real-time direct-current (DC) output. Here, a thorough study of the effect of relative humidity (RH) on a TVNG consisting of 4H-SiC (n-type) and metallic copper foil (SM-TVNG) is presented. The SM-TVNG shows a remarkable sensitivity to RH and an abnormal RH dependence. When RH increases from ambient humidity up to 80%, an increasing electrical output is observed. However, when RH rises from 80% to 98%, the signal output not only decreases, but its direction reverses as it crosses 90% RH. This behavior differs greatly from that of a Si-based TVNG, whose output constantly increases with RH. The behavior of the SM-TVNG might result from the competition between the built-in electric field induced by metal-semiconductor contact and a strong triboelectric electric field induced by solid-liquid triboelectrification under high RH. The authors also demonstrated that both SM-TVNG and Si-based TVNG can work effectively as-is even fully submerged in deionized water. This mechanism can affect other devices and be applied to design self-powered sensors working under high RH or underwater.

12.
Small ; 20(15): e2307288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997215

RESUMEN

Ocean energy is a kind of clean and renewable energy source, but it cannot be efficiently harvested by traditional electromagnetic generators, due to its low-frequency characteristic. The emergence of triboelectric nanogenerators provides a more promising technology for collecting ocean energy. In this work, a durable roller-based swing-structured triboelectric nanogenerator (RS-TENG) is designed and fabricated for low-frequency water wave energy harvesting. The rolling structure reduces the wear between triboelectric materials and improves the device's durability. After a continuous operation of 1 260 000 cycles, the attenuation of the electrical outputs of the RS-TENG is below 1.6%, exhibiting excellent durability. At the same time, the output current can arrive at 53.2 µA. Under the triggering of water waves, the RS-TENG can generate an output power of 4.27 mW, corresponding to a power density of 1.16 W m-3. After the arraying, the output performance can be doubled, so that the TENG can successfully power an environmental monitoring sensor and ensure long-term stable operation of the sensor. This work provides an effective strategy for improving the device durability, which benefits the practical applications of the TENGs in large-scale blue energy harvesting.

13.
Small ; : e2402661, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813727

RESUMEN

Traffic lights play vital roles in urban traffic management systems, providing clear directional guidance for vehicles and pedestrians while ensuring traffic safety. However, the vast quantity of traffic lights widely distributed in the transportation system aggravates energy consumption. Here, a self-powered traffic light system is proposed through wind energy harvesting based on a high-performance fur-brush dish triboelectric nanogenerator (FD-TENG). The FD-TENG harvests wind energy to power the traffic light system continuously without needing an external power supply. Natural rabbit furs are applied to dish structures, due to their outstanding characteristics of shallow wear, high performance, and resistance to humidity. Also, the grid pattern of the dish structure significantly impacts the TENG outputs. Additionally, the internal electric field and the influences of mechanical and structural parameters on the outputs are analyzed by finite element simulations. After optimization, the FD-TENG can achieve a peak power density of 3.275 W m-3. The portable and miniature features of FD-TENG make it suitable for other natural environment systems such as forests, oceans, and mountains, besides the traffic light systems. This study presents a viable strategy for self-powered traffic lights, establishing a basis for efficient environmental energy harvesting toward big data and Internet of Things applications.

14.
Small ; 20(10): e2302426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37907412

RESUMEN

Tailoring nanoparticles' composition and morphology is of particular interest for improving their performance for catalysis. A challenge of this approach is that the nanoparticles' optimized initial structure often changes during use. Visualizing the three dimensional (3D) structural transformation in situ is therefore critical, but often prohibitively difficult experimentally. Although electron tomography provides opportunities for 3D imaging, restrictions in the tilt range of in situ holders together with electron dose considerations limit the possibilities for in situ electron tomography studies. Here, an in situ 3D imaging methodology is presented using single particle reconstruction (SPR) that allows 3D reconstruction of nanoparticles with controlled electron dose and without tilting the microscope stage. This in situ SPR methodology is employed to investigate the restructuring and elemental redistribution within a population of PtNi nanoparticles at elevated temperatures. The atomic structure of PtNi is further examined and a heat-induced transition is found from a disordered to an ordered phase. Changes in structure and elemental distribution are linked to a loss of catalytic activity in the oxygen reduction reaction. The in situ SPR methodology employed here can be extended to a wide range of in situ studies employing not only heating, but gaseous, aqueous, or electrochemical environments to reveal in-operando nanoparticle evolution in 3D.

15.
Small ; : e2403879, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881274

RESUMEN

Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric-electromagnetic hybrid nanogenerator (TE-HNG) consisting of TENGs and electromagnetic generators (EMGs) is proposed to harvest water flow energy. A magnetic coupling transmission component is applied to replace traditional bearing structures, which can realize the fully enclosed packaging of the TENG devices and achieve long-lasting energy harvesting from water flow. Under the intense water impact, magnetic coupling reduces the possibility of internal gear damage due to excessive torque, indicating superior stability and robustness compared to conventional TENG. At the waterwheel rotates speed of 75 rpm, the TE-HNG can generate an output peak power of 114.83 mW, corresponding to a peak power density of 37.105 W m-3. After 5 h of continuous operation, the electrical output attenuation of TENG is less than 3%, demonstrating excellent device durability. Moreover, a self-powered temperature sensing system and a self-powered cathodic protection system based on the TE-HNG are developed and illustrated. This work provides a prospective strategy for improving the output stability of TENGs, which benefits the practical applications of the TENGs in large-scale blue energy harvesting.

16.
Small ; 20(23): e2310809, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38154097

RESUMEN

Triboelectric nanogenerator (TENG) as a means of energy harvesting can effectively harvest ocean wave energy, but the energy conversion efficiency and stability of the device during long-term operations are still problems that must be solved for TENGs. Decreasing the frictional resistance between two triboelectric material surfaces is one of the critical approaches for improving the device efficiency and durability. In this work, a novel stacked disc-type rolling triboelectric nanogenerator (SDR-TENG) is designed and fabricated for low-frequency water wave energy harvesting. After 860 000 working cycles, the electrical output attenuation of the SDR-TENG basic unit is less than 5%, showing excellent device durability. Under the simulated water wave conditions, the SDR-TENG with four rolling TENG units can produce an output current of 84.4 µA and an output power of 7.6 mW, corresponding to an effective power density of 16.8 W m-3. This work not only proposes a strategy to effectively enhance the durability of the devices, but also provides a feasible solution for monitoring the surrounding environment of the charging buoys of unmanned ships.

17.
Small ; : e2400698, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446055

RESUMEN

Triboelectric nanogenerator (TENG) is a promising solution to harvest the low-frequency, low-actuation-force, and high-entropy droplet energy. Conventional attempts mainly focus on maximizing electrostatic energy harvest on the liquid-solid surface, but enormous kinetic energy of droplet hitting the substrate is directly dissipated, limiting the output performance. Here, a dual-mode TENG (DM-TENG) is proposed to efficiently harvest both electrostatic energy at liquid-solid surface from a droplet TENG (D-TENG) and elastic potential energy of the vibrated cantilever from a contact-separation TENG (CS-TENG). Triggered by small droplets, the flexible cantilever beam, rather than conventional stiff ones, can easily vibrate multiple times with large amplitude, enabling frequency multiplication of CS-TENG and producing amplified output charges. Combining with the top electrode design to sufficiently utilize charges at liquid-solid interface, a record-high output charge of 158 nC is realized by single droplet. The energy conversion efficiency of DM-TENG is 2.66-fold of D-TENG. An array system with the specially designed power management circuit is also demonstrated for building self-powered system, offering promising applications for efficiently harvesting raindrop energy.

18.
Small ; 20(3): e2304752, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691019

RESUMEN

The patient-centered healthcare requires timely disease diagnosis and prognostic assessment, calling for individualized physiological monitoring. To assess the postoperative hemodynamic status of patients, implantable blood flow monitoring devices are highly expected to deliver real time, long-term, sensitive, and reliable hemodynamic signals, which can accurately reflect multiple physiological conditions. Herein, an implantable and unconstrained vascular electronic system based on a piezoelectric sensor immobilized is presented by a "growable" sheath around continuously growing arterial vessels for real-timely and wirelessly monitoring of hemodynamics. The piezoelectric sensor made of circumferentially aligned polyvinylidene fluoride nanofibers around pulsating artery can sensitively perceive mechanical signals, and the growable sheath bioinspired by the structure and function of leaf sheath has elasticity and conformal shape adaptive to the dynamically growing arterial vessels to avoid growth constriction. With this integrated and smart design, long-term, wireless, and sensitive monitoring of hemodynamics are achieved and demonstrated in rats and rabbits. It provides a simple and versatile strategy for designing implantable sensors in a less invasive way.


Asunto(s)
Electrónica , Hemodinámica , Humanos , Animales , Conejos , Ratas , Prótesis e Implantes , Monitoreo Fisiológico
19.
Small ; 20(21): e2310117, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155494

RESUMEN

Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method.

20.
Chem Rev ; 122(5): 5209-5232, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160191

RESUMEN

Interfaces between a liquid and a solid (L-S) are the most important surface science in chemistry, catalysis, energy, and even biology. Formation of an electric double layer (EDL) at the L-S interface has been attributed due to the adsorption of a layer of ions at the solid surface, which causes the ions in the liquid to redistribute. Although the existence of a layer of charges on a solid surface is always assumed, the origin of the charges is not extensively explored. Recent studies of contact electrification (CE) between a liquid and a solid suggest that electron transfer plays a dominant role at the initial stage for forming the charge layer at the L-S interface. Here, we review the recent works about electron transfer in liquid-solid CE, including scenerios such as liquid-insulator, liquid-semiconductor, and liquid-metal. Formation of the EDL is revisited considering the existence of electron transfer at the L-S interface. Furthermore, the triboelectric nanogenerator (TENG) technique based on the liquid-solid CE is introduced, which can be used not only for harvesting mechanical energy from a liquid but also as a probe for probing the charge transfer at liquid-solid interfaces.


Asunto(s)
Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA