Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403252, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923177

RESUMEN

Ionogel has recently emerged as a promising ionotronic material due to its good ionic conductivity and flexibility. However, low stretchability and significant hysteresis under long-term loading limit their mechanical stability and repeatability. Developing ultralow hysteresis ionogels with high stretchability is of great significance. Here, a simple and effective strategy is developed to fabricate highly stretchable and ultralow-hysteresis noncovalent cross-linked ionogels based on phase separation by 3D printing of 2-hydroxypropyl acrylate (HPA) in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). Ingeniously, the sea-island structure of the physically cross-linked network constructed by the smaller nanodomains and larger nanodomain clusters significantly minimizes the energy dissipation, endowing these ionogels with remarkable stretchability (>1000%), ultra-low hysteresis (as low as 0.2%), excellent temperature tolerance (-33-317 °C), extraordinary ionic conductivity (up to 1.7 mS cm-1), and outstanding durability (5000 cycles). Moreover, due to the formation of nanophase separation and cross-linking structure, the as-prepared ionogels exhibit unique thermochromic and multiple photoluminescent properties, which can synergistically be applied for anti-counterfeiting and encrypting. Importantly, flexible thermo-mechano-multimodal visual ionotronic sensors for strain and temperature sensing with highly stable and reproducible electrical response over 20 000 cycles are fabricated, showing synergistically optical and electrical output performances.

2.
Macromol Rapid Commun ; : e2400316, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825873

RESUMEN

Responsive chiral optical materials have gained considerable interests from the fields of sensing, display, and optical devices. Materials that are capable of changing chiral optics under harsh conditions such as strong basic/acidic or ultrahigh temperature provides thoughts for the design of materials working at special environments, which however, are still underdeveloped. Here, a proof-of-concept design of organogel is reported that acts as matrices for thermal chiroptical switch with critical working temperature above 100 °C. The reversible solution-to-gel transition of the specific ß-cyclodextrin/dimethyl formide/LiCl system is initialized at about 130 °C, when the luminophores with aggregation-induced-emission property shall be lighted up with transferred chirality from inherent chiral ß-cyclodextrin. It allows for the controlled emergence of circularly polarized luminescence. This delicate design enables successful fabrication of ultrahigh temperature thermal chiroptical switch.

3.
Molecules ; 29(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202843

RESUMEN

Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V-1 s-1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics.

4.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257368

RESUMEN

Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A novel π-conjugated polymer material, PDPP-5Th, was synthesized by adding the electron acceptor unit, DPP, to the polythiophene system with a long alkyl side chain, which facilitated the solution processing of the material for the preparation of devices. Meanwhile, the presence of the multicarbonyl groups within the DPP molecule facilitated donor-acceptor interactions in the internal chain, which further improved the hole-transport properties of the polythiophene-based material. The weak forces present within the molecules that promoted structural coplanarity were analyzed using theoretical simulations. Furthermore, the grazing incidence wide-angle X-ray scanning (GIWAXS) results indicated that PDPP-5Th features high crystallinity, which is favorable for efficient carrier migration within and between polymer chains. The material showed hole transport properties as high as 0.44 cm2 V-1 s-1 in conductivity testing. Our investigations demonstrate the great potential of this polymer material in the field of optoelectronics.

5.
Angew Chem Int Ed Engl ; : e202407182, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757553

RESUMEN

Dynamic chemistry utilizing both covalent and noncovalent bonds provides valid protocols in manipulating properties of self-assemblies and functions. Here we employ dynamic chemistry to realize multiple-route control over supramolecular chirality up to five states. N-protected fluorinated phenylalanine in the carboxylate state self-assembled into achiral nanoparticles ascribed to the amphiphilicity. Protonation promoted one-dimensional growth into helices with shrunk hydrophilicity, which in the presence of disulfide pyridine undergo chirality inversion promoted by the hydrogen bonding-directed coassembly. Further interacting with the water-soluble reductant cleavages the disulfide bond to initiate the rearrangement of coassemblies with a chirality inversion as well. Finally, by tuning the pH environments, aromatic nucleophilic substitution reaction between reduced products and perfluorinated phenylalanine occurs, giving distinct chiral nanoarchitectures with emerged luminescence and circularly polarized luminescence. We thus realized a particular five-state control by combining dynamic chemistry at one chiral compound, which greatly enriches the toolbox in fabricating responsive chiroptical materials.

6.
Small ; 19(33): e2302517, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37165600

RESUMEN

How halogenation affects protein or peptide folding and self-assembly hierarchically? This study tries to answer this question by using the halogen bonding mediated self-assemblies on cyclodipeptide scaffolds. Single-functionalized cyclodipeptides (Cyclo-GX) based on para-halogenated phenylalanine in the solid state form homochiral helical nanotubes via consecutive X···O bonds (X = Cl, Br, and I) independent of halogen kinds. In contrast, double-functionalized cyclodipeptides (Cyclo-XX) feature versatile self-assembly architectures depending on the para-substituents (X = H, F, Cl, Br, and I), affording nanotubular, lamellar, and triple helical nanotubular architectures. Cyclo-BrBr exclusively adopts intramolecular Type-IV X···X interaction that alters the molecular folding and packing, which also gives rise to opposite chirality at molecular folding (secondary structure), stacking (tertiary structure), and self-assembled nanohelices (quarternary structure) at macroscopic scale. It unveils how halogenation impacts on the self-assembly and chirality at hierarchical levels in specific peptides. Clusteroluminescence is found for the cyclodipeptides, achieving high quantum yield up to 71%, whereby circularly polarized luminescence is realized with tunable handedness by controlling halogen substituents.

7.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202654

RESUMEN

Organic dye semiconductors have received increasing attention as the next generation of semiconductors, and one of their potential applications is as a core component of organic transistors. In this study, two novel diketopyrrolopyrrole (DPP) dye core-based materials were designed and separately prepared using Stille coupling reactions under different palladium catalyst conditions. The molecular weights and elemental compositions were tested to demonstrate that both catalysts could be used to successfully prepare materials of this structure, with the main differences being the weight-average molecular weight and the dispersion index. PDPP-2Py-2Tz I with a longer conjugation length exhibited better thermodynamic stability than the counterpart polymer PDPP-2Py-2Tz II. The intrinsic optical properties of the polymers were relatively similar, while the electrochemical tests showed small differences in their energy levels. The polymers obtained with different catalysts displayed similar and moderate electron mobility in transistor devices, while PDPP-2Py-2Tz I possessed a higher switching ratio. Our study provides a comparison of such dye materials under different catalytic conditions and also demonstrates the great potential of dye materials for optoelectronic applications.

8.
Angew Chem Int Ed Engl ; 62(1): e202214504, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36347808

RESUMEN

Hydrogels behave as potential candidates to investigate circularly polarized light (CP)-matter interaction, which however suffer from small sensitivity towards circular polarization. Here we report a general protocol to build hydrogels from π-conjugated amino acids with coassembled charge-transfer (CT) complexes, covering a wide scope of donors and acceptors, which were incorporated into stable hydrogel matrices. CT complexes formed block coassemblies with gelators, induced the emergence of macroscopic chiral helices, where efficient chirality transfer occurs to realize tunable Cotton effects from visible light to NIR-I region depending on the structures of CT pairs. The hybrid hydrogels showed tunable photothermal performances with excellent heating-cooling cycling durability. Circularly polarized NIR light selectively triggered gel-solution phase transition at different timescales. Left- and right-CP illumination generates up to 2.5 folds difference in gel collapse time that allows for direct discrimination by naked eyes.


Asunto(s)
Hidrogeles , Rayos Infrarrojos , Hidrogeles/química
9.
Int Orthop ; 46(7): 1515-1520, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35224670

RESUMEN

AIM: The use of porous tantalum trabecular metal (TM) shell and augment to reconstruct acetabular defects in revision total hip arthroplasty (THA) is a reliable technique. We evaluated the mid-term implant survival, clinical, and radiological outcomes of our first 48 revisions using this technique. PATIENTS AND METHODS: A total of 45 patients (48 hips) who had acetabular revision of THA between 2011 and 2017 using TM shell and augment with possible mid-term follow-up were included. Twenty-two patients were men (49%) and 23 were women (51%), mean age was 62.5 years (34 to 85) and mean follow-up was 75 months (54 to 125). Twenty-four hips (50%) had a Paprosky IIIA defect, 14 (29.2%) had a type IIIB defect, six (12.5%) had a type IIC defect, and four hips (8.3%) had a type IIB defect. None of the patients had pelvic discontinuity (PD). RESULTS: At a mean 6.25 years follow-up, all hips remained well-fixed and implant survival of 100% with the need of re-revision as the end point. Screw fixation was used for all shells; augments and the shell-augment interface was cemented. Excellent pain relief (mean WOMAC score pain 90.5, (38.3 to 100)), and functional outcomes (mean WOMAC function 88.3 (31.9 to 100), mean OHS 89.2 (31.8 to 100)) were noted. Patient satisfaction scores were excellent. CONCLUSION: This study demonstrated satisfactory mid-term clinical and radiological outcomes of using TM shell and augment for reconstructing major acetabular defects without PD in revision THA.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Acetábulo/diagnóstico por imagen , Acetábulo/cirugía , Artroplastia de Reemplazo de Cadera/efectos adversos , Artroplastia de Reemplazo de Cadera/métodos , Femenino , Estudios de Seguimiento , Prótesis de Cadera/efectos adversos , Humanos , Masculino , Metales , Persona de Mediana Edad , Dolor/cirugía , Porosidad , Falla de Prótesis , Reoperación , Estudios Retrospectivos , Tantalio
10.
Small ; 17(44): e2104499, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608747

RESUMEN

Charge-transfer (CT) complexation between electron-rich and deficient aromatics has been widely applied in functional optical and photovoltaic materials. The selective complexation and spontaneous disassociation behavior of a dynamic charge-transfer coassembly possess potential in designing smart and dynamic luminescent materials, which however have not been addressed so far. In this work, the transient charge-transfer driven coassembly between π-conjugated amino acids and tetracyanobenzene, showing dynamic luminescent transition and circularly polarized luminescence (CPL) evolution property, is illustrated. Transient coassembly behaviors are independent to the diverse binding sites covering fluorene, naphthalene, and anthracene, attributed to the intramolecular CH…π interaction. Incorporation of fluorescent dyes enables a transient light harvesting process with hyperchromic CPL properties. Spontaneous green-to-red CPL transition hydrogels are also fabricated by embedding a competitive CT donor. Using a polymeric matrix treated by organic solvents, charge-transfer coassembly is immobilized with diverse circularly polarized luminescence. Such sensitive complexation shows applications in moisture-responsive luminescent materials and multiple luminescent color evolutions are realized.


Asunto(s)
Colorantes Fluorescentes , Luminiscencia , Dicroismo Circular , Electrones , Solventes
11.
Angew Chem Int Ed Engl ; 60(6): 3138-3147, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33151024

RESUMEN

Deep understanding of structure-property relationship between packing of chiral building units and their chiroptical behaviors would significantly facilitate the rational design and fabrication of the emerging chiroptical materials such as circularly polarized luminescence (CPL) emissive materials. In this paper, we unveil the universal existence of supramolecular tilt helical superstructures in self-assembled π-conjugated amino acid derivatives. A series of coded amino acid methyl esters were conjugated to anthracene segments at N-terminus, which afforded 21 and 31 symmetry supramolecular tilt chirality in solid-states. Helical assemblies enabled diversified Cotton effects and CPL performances, which were in accordance with the tilted chirality between anthracene segments. Such correlation shows fine universality, whereby the chiroptical prediction could be realized. Furthermore, on top of charge-transfer complexation, manipulation of CPL emission colors and handedness were realized.

12.
Small ; 16(30): e2002036, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32578382

RESUMEN

Bottom-up multicomponent molecular self-assembly is an efficient approach to fabricate and manipulate chiral nanostructures and their chiroptical activities such as the Cotton effect and circular polarized luminescence (CPL). However, the integrated coassembly suffers from spontaneous and inherent systematic pathway complexity with low yield and poor fidelity. Consequently, a rational design of chiral self-assembled systems with more than two components remains a significant challenge. Herein, a modularized, ternary molecular self-assembly strategy that generates chiroptically active materials at diverse hierarchical levels is reported. N-terminated aromatic amino acids appended with binding sites for charge transfer and multiple hydrogen bonds undergo the evolution of supramolecular chirality with unique handedness and luminescent color, generating abundant CPL emission with high luminescence dissymmetry factor values in precisely controlled modalities. Ternary coassembly facilitates high-water-content hydrogel formation constituted by super-helical nanostructures, demonstrating a helix to toroid topological transition. This discovery would shed light on developing complicated multicomponent systems in mimicking biological coassembly events.


Asunto(s)
Luminiscencia , Nanoestructuras , Enlace de Hidrógeno , Agua
13.
Angew Chem Int Ed Engl ; 59(28): 11556-11565, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32270895

RESUMEN

In the solid state, amino acids (alanine and phenylglycine) with appended pyrene segments self-assembled into α-helix-like structures by asymmetrical H-bonds between carboxylic acid and amide segments, further inducing supramolecular tilted chirality of the achiral pyrenes. These structures bind melamine and electron-deficient units through H-bond and charge-transfer interactions, respectively. Charge-transfer interactions enhance the dissymmetry g-factor of absorption (gabs ; up to 1.4×10-2 ) with an extended Cotton effect active region (from 250 to 600 nm). Incorporating melamine inverts the handedness of circularly polarized luminescence and boosts the dissymmetry g-factor (glum ). Melamine also induces macroscopic chirality at the nanoscale, whereby the 2D lamellar structures are transformed into 1D helices at the nanoscale, leading to giant tubular structures at the microscale.

14.
Soft Matter ; 15(32): 6596-6603, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31378793

RESUMEN

Design and fabrication of superstructures are intriguing yet challenging tasks, which require delicate operations at micro/nanoscale such as template-directed seeding or etching processes. In this study, we prepared integrated one dimensional (1D) microrods from co-assembled N-terminated aromatic amino acids and bipyridines that could serve as sacrificial templates for micro-superstructure formation. Organic polar solvents were utilized for generating a co-assembly that showed selectivity to both molecular topology of building blocks and solvent environments via thermodynamic and kinetic manners. The addition of specific transition metal ions would extract bipyridines from crystalline microrods, leading to well-aligned engraved motifs along the 1D direction as well as the emergence of ordered packed nanostructures on microrod surfaces. Responsive to types of metal ions, diverse superstructures such as etched sculptures and surface-encapsulated heterojunctions of metal-bipyridine coordination polymers were constructed. This study offers a proof-of-concept exploration in the rational design of 1D crystalline micro-superstructures via non-covalent complexation towards potential applications in electrical and optical applications.

15.
J Bone Miner Metab ; 35(6): 649-658, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28012008

RESUMEN

Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10-8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Densidad Ósea/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Adulto , Femenino , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética
16.
Chem Sci ; 15(18): 6924-6933, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725497

RESUMEN

Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies. Though the presence of PnB has limited effects on spectroscopic properties in the solution phase, conformation locking effects are sufficiently expressed in the chiral folding and self-assembly behavior. PnB anchors the chiral conformation to control the emergence and inversion of chiroptical signals, while intramolecular PnB induces the formation of supramolecular tilt chirality. It also enables the chiral folding of imide-containing amino acid or peptide derivatives, which induces the formation of unique secondary structural sequences such as ß-sheets. Finally, the effects of PnB in directing folded helical structures were revealed. Examples of cysteine and cystine derivatives containing multiple N⋯O and N⋯S PnBs constitute an α-helix like secondary structure with characteristic circular dichroism. This work discloses the comprehensive existence of imide-involved PnB, illustrates its important role in folding and self-assembly, and sheds light on the rational fabrication of conformation-locked compounds and polymers with controllable chiroptical activities.

17.
Front Nutr ; 11: 1399969, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962445

RESUMEN

Background: Insulin resistance (IR) is closely related to the development of cardiovascular diseases. Triglyceride-glucose-body mass index (TyG-BMI) has been proven to be a reliable surrogate of IR, but the relationship between TyG-BMI and acute myocardial infarction (AMI) is unknown. The present study aims to determine the effects of TyG-BMI on the clinical prognosis of critically ill patients with AMI. Methods: The data of AMI patients were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. All patients were divided into four groups according to the TyG-BMI quartile. Outcomes were defined as 30-, 90-, 180-, and 365-day all-cause mortality. Kaplan-Meier (K-M) curve was used to compare survival rate between groups. Meanwhile, Cox regression analysis and restricted cubic splines (RCS) were used to explore the relationship between TyG-BMI index and outcome events. Results: A total of 1,188 critically ill patients with AMI were included in this study. They were divided into four groups according to TyG-BMI quartiles, there were significant differences in 90-, 180-, and 365-day all-cause mortality while there was no difference in 30-day all-cause mortality. Interestingly, with the increase of TyG-BMI, the 90-, 180-, and 365-day survival rate increased first and then gradually decreased, but the survival rate after decreasing was still higher than that in the group with the lowest TyG-BMI. U-shaped relationships between TyG-BMI index and 90-, 180-, and 365-day all-cause mortality were identified using RCS curve and the inflection point was 311.1, 316.5, and 320.1, respectively, whereas the TyG-BMI index was not non-linearly associated with 30-day all-cause mortality. The results of Cox proportional hazard regression analysis are consistent with those of RCS analysis. Conclusion: U-shaped relationships are existed between the TyG-BMI index and 90-, 180-, and 365-day all-cause mortality in critically ill patients with AMI, but not 30-day all-cause mortality. The TyG-BMI index can be used as an effective index for early prevention of critically ill patients with AMI.

18.
ACS Appl Mater Interfaces ; 16(10): 13103-13113, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422366

RESUMEN

Ionogels have great potential for the development of tissue-like, soft, and stretchable ionotronics. However, conventional isotropic ionogels suffer from poor mechanical properties, low efficient force transmission, and tardy mechanoelectric response, hindering their practical utility. Here, we propose a simple one-step method to fabricate bioinspired anisotropic nanocomposite ionogels based on a combination of strain-induced phase separation and mechanomodulation of ionic conduction in the presence of attapulgite nanorods. These ionogels show high stretchability (747.1% strain), tensile strength (6.42 MPa), Young's modulus (83.49 MPa), and toughness (18.08 MJ/m3). Importantly, the liquid crystalline domain alignment-induced microphase separation and ionic conductivity enhancement during stretching endow these ionogels with an unusual mechanoelectric response and dual-programmable shape-memory properties. Moreover, the anisotropic structure, good elasticity, and unique resistance-strain responsiveness give the ionogel-based strain sensors high sensitivity, rapid response time, excellent fatigue resistance, and unique waveform-discernible strain sensing, which can be applied to real-time monitoring of human motions. The findings offer a promising way to develop bioinspired anisotropic ionogels to modulate the microstructure and properties for practical applications in advanced ionotronics.

19.
Mycologia ; 116(4): 498-508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848260

RESUMEN

Fossil epifoliar fungi are valuable indicators of paleoenvironment and paleoecology. The Meliolaceae, members of which typically inhabit the surface of living plants as biotrophs or pathogens, is one of the largest groups of epifoliar fungi. In this study, we report a novel fossil species of Meliolinites Selkirk (fossil Meliolaceae), Meliolinites tengchongensis, on the lower epidermis of compressed fossil Rhodoleia (Hamamelidaceae) leaves from the Upper Pliocene Mangbang Formation of Tengchong, Yunnan, southwestern China. Meliolinites tengchongensis is characterized by web-like, superficial, brown to dark brown, septate, and branching mycelia bearing 2-celled appressoria and unicellular phialides. The fungal colonies also include ellipsoidal, 5-celled, 4-septate ascospores and dark brown perithecia with suborbicular outline and verrucose surface. The well-preserved vegetative and reproductive organs help us to explore the potential disease process of the new fossil species. Besides, the presence of fungal remains indicates that the fungal taxon might have maintained its host preference since at least the Late Pliocene. Furthermore, the occurrence of both fossil fungi and their host plants in Tengchong indicate a subtropical-tropical, warm, and humid climate during the Late Pliocene, whereas the distribution pattern of the fungi on the host leaves suggests that Rhodoleia may have been a part of the middle-upper canopies in the Tengchong Late Pliocene multilayered forest.


Asunto(s)
Fósiles , Hojas de la Planta , Hojas de la Planta/microbiología , China , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Esporas Fúngicas
20.
Polymers (Basel) ; 15(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37631449

RESUMEN

The development of n-type organic semiconductor materials for transporting electrons as part of logic circuits is equally important to the development of p-type materials for transporting holes. Currently, progress in research on n-type materials is relatively backward, and the number of polymers with high electron mobility is limited. As the core component of the organic field-effect transistor (OFET), the rational design and judicious selection of the structure of organic semiconductor materials are crucial to enhance the performance of devices. A novel conjugated copolymer with an all-acceptor structure was synthesized based on an effective chemical structure modification and design strategy. PDPPTT-2Tz was obtained by the Stille coupling of the DPPTT monomer with 2Tz-SnMe3, which features high molecular weight and thermal stability. The low-lying lowest unoccupied molecular orbital (LUMO) energy level of the copolymer was attributed to the introduction of electron-deficient bithiazole. DFT calculations revealed that this material is highly planar. The effect of modulation from a donor-acceptor to acceptor-acceptor structure on the improvement of electron mobility was significant, which showed a maximum value of 1.29 cm2 V-1 s-1 and an average value of 0.81 cm2 V-1 s-1 for electron mobility in BGBC-based OFET devices. Our results demonstrate that DPP-based polymers can be used not only as excellent p-type materials but also as promising n-type materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA