Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960611

RESUMEN

The uneven energy response of radiation detectors severely limits the accuracy of the dose rate meter used for radiation protection. Currently widely used in dose rate meters as a physical method of setting shielding compensation, the energy response correction error of the detector at different energies is mostly between 15 and 25%. This work designs a real-time correction method for energy response based on a novel Cs3Cu2I5:Tl scintillation detector to improve the accuracy of the dose rate meter used for radiation protection. The technique utilizes the idea of pulse amplitude weighting (PAW) to segment the pulse amplitude histogram. This detector achieves an almost constant energy response after our correction. The experimental results show that compared to 137Cs γ rays, the maximum error of the response is 8.26% in the photon energy ranging from 33 keV to 1.25 MeV, which is much better than ±30% of the recommended IEC 61526:2010, verifying the feasibility of PAW.

2.
Adv Mater ; 35(44): e2304938, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555528

RESUMEN

An ultrabright, ultrafast, and low-cost ideal scintillator has been critically absent and is sorely desired in scintillation detection, but has hitherto not been found. Here, a high-quality bulk Cs3 Cu2 I5 :Mn single-crystal scintillator with ultrahigh light yield (≈95 772 photons per MeV, 137 Cs γ-rays), excellent energy resolution (3.79%, 662 keV), and ultrafast scintillation decay time (3 ns, 81.5%) is reported. In mechanism, it is found that micro-doping of a heterovalent magnetic ion (at the ppm level) can effectively modulate the luminescence kinetics of self-trapped excitons in the scintillator. Compared with previous reports, the introduction of trace amounts of magnetic Mn2+ (≈18.6 ppm) in Cs3 Cu2 I5 single-crystal shortens the scintillation decay time by several hundred times, transforming the slow decay into an ultrafast decay. Simultaneously, the light yield is also increased about three times to the highest value so far. From the comprehensive performance of the micro-doped Cs3 Cu2 I5 :Mn single-crystal, these excellent scintillation properties, physical characteristics suitable for practical applications, and low-cost advantages render this single-crystal an ideal scintillator with great potential for commercialization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA