RESUMEN
In plants, auxin/indoleacetic acid (Aux/IAA) proteins are transcriptional regulators that regulate developmental process and responses to phytohormones and stress treatments. However, the regulatory functions of the Vitis vinifera L. (grapevine) Aux/IAA transcription factor gene VvIAA18 have not been reported. In this study, the VvIAA18 gene was successfully cloned from grapevine. Subcellular localization analysis in onion epidermal cells indicated that VvIAA18 was localized to the nucleus. Expression analysis in yeast showed that the full length of VvIAA18 exhibited transcriptional activation. Salt tolerance in transgenic tobacco plants and Escherichia. coli was significantly enhanced by VvIAA18 overexpression. Real-time quantitative PCR analysis showed that overexpression of VvIAA18 up-regulated the salt stress-responsive genes, including pyrroline-5-carboxylate synthase (NtP5CS), late embryogenesis abundant protein (NtLEA5), superoxide dismutase (NtSOD), and peroxidase (NtPOD) genes, under salt stress. Enzymatic analyses found that the transgenic plants had higher SOD and POD activities under salt stress. Meanwhile, component analysis showed that the content of proline in transgenic plants increased significantly, while the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased significantly. Based on the above results, the VvIAA18 gene is related to improving the salt tolerance of transgenic tobacco plants. The VvIAA18 gene has the potential to be applied to enhance plant tolerance to abiotic stress.
Asunto(s)
Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Vitis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequías , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Factores de Transcripción/genéticaRESUMEN
Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on 'core' genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/metabolismo , Proteoma/metabolismo , Semillas/metabolismo , Regulación hacia Abajo/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Mutación , Oryza/embriología , Oryza/genética , Fenotipo , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolaminas/metabolismo , Proteómica/métodos , ARN Mensajero/análisis , Proteínas Ribosómicas , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ARN , Almidón/metabolismo , Transcriptoma , Regulación hacia Arriba/genéticaRESUMEN
BACKGROUND: Grain chalkiness is a highly undesirable trait deleterious to rice appearance and milling quality. The physiological and molecular foundation of chalkiness formation is still partially understood, because of the complex interactions between multiple genes and growing environments. RESULTS: We report the untargeted metabolomic analysis of grains from a notched-belly mutant (DY1102) with high percentage of white-belly, which predominantly occurs in the bottom part proximal to the embryo. Metabolites in developing grains were profiled on the composite platforms of UPLC/MS/MS and GC/MS. Sampling times were 5, 10, 15, and 20 days after anthesis, the critical time points for chalkiness formation. A total of 214 metabolites were identified, covering most of the central metabolic pathways and partial secondary pathways including amino acids, carbohydrates, lipids, cofactors, peptides, nucleotides, phytohormones, and secondary metabolites. A comparison of the bottom chalky part and the upper translucent part of developing grains of DY1102 resulted in 180 metabolites related to chalkiness formation. CONCLUSIONS: Generally, in comparison to the translucent upper part, the chalky endosperm had lower levels of metabolites regarding carbon and nitrogen metabolism for synthesis of storage starch and protein, which was accompanied by perturbation of pathways participating in scavenging of reactive oxygen species, osmorugulation, cell wall synthesis, and mineral ion homeostasis. Based on these results, metabolic mechanism of chalkiness formation is discussed, with the role of embryo highlighted.
Asunto(s)
Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Grano Comestible/anatomía & histología , Grano Comestible/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas/fisiología , Metabolómica , Oryza/anatomía & histología , Proteínas de Plantas/metabolismo , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Chalkiness has a deleterious influence on rice appearance and milling quality. We identified a notched-belly mutant with a high percentage of white-belly, and thereby developed a novel comparison system that can minimize the influence of genetic background and growing conditions. Using this mutant, we examined the differences in chemical composition between chalky and translucent endosperm, with the aim of exploring relations between occurrence of chalkiness and accumulation of starch, protein and minerals. RESULTS: Comparisons showed a significant effect of chalkiness on chemical components in the endosperm. In general, occurrence of chalkiness resulted in higher total starch concentration and lower concentrations of the majority of the amino acids measured. Chalkiness also had a positive effect on the concentrations of As, Ba, Cd, Cr, Mn, Na, Sr and V, but was negatively correlated with those of B, Ca, Cu, Fe and Ni. By contrast, no significant chalkiness effect on P, phytic acid-P, K, Mg or Zn was observed. In addition, substantial influence of the embryo on endosperm composition was detected, with the embryo showing a negative effect on total protein, amino acids such as Arg, His, Leu, Lys, Phe and Tyr, and all the 17 minerals measured, excluding Ca, Cu, P and Sr. CONCLUSION: An inverse relation between starch and protein as well as amino acids was found with respect to chalkiness occurrence. Phytic acid and its colocalized elements K and Mg were not affected by chalkiness. The embryo exerted a marked influence on chemical components of the endosperm, in particular minerals, suggesting the necessity of examining the role of the embryo in chalkiness formation. © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Aminoácidos/análisis , Carbohidratos de la Dieta/análisis , Mutación , Oryza/química , Proteínas de Vegetales Comestibles/análisis , Semillas/química , Oligoelementos/análisis , Aminoácidos/metabolismo , China , Carbohidratos de la Dieta/metabolismo , Endospermo/química , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Humanos , Magnesio/análisis , Magnesio/metabolismo , Microscopía Electrónica de Rastreo , Valor Nutritivo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Ácido Fítico/análisis , Ácido Fítico/biosíntesis , Proteínas de Vegetales Comestibles/biosíntesis , Potasio/análisis , Potasio/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Almidón/análisis , Almidón/biosíntesis , Oligoelementos/metabolismoRESUMEN
Rice is the main food crops with the higher capacity for cadmium (Cd) uptake, necessitating the urgent need for remediation measures to address Cd in paddy soil. Reasonable agronomic methods are convenient and favorable for fixing the issue. In this study, a pot experiment was employed to evaluate the effects of two foliar (NaH2PO4, SDP; KH2PO4, PDP) and two solid phosphate fertilizers (double-superphosphate, DSP; calcium-magnesium phosphate, CMP) on uptake and remobilization of Cd in rice plants under the low-P and rich-Cd soil. The results revealed that these four phosphorus fertilizer significantly down-regulated the relative expression of OsNRAMP5 involved in Cd absorption, while up-regulated OsPCS1 expression and increased distribution of Cd into the cell wall in roots. Furthermore, phosphorus fertilizer resulted in a significant decrease in the relative expression of OsLCT1 in stems and OsLCD in leaves, decreased the transfer factor of Cd from shoots to grains, and ulterior reduced the Cd accumulation in three protein components of globulin, albumin, and glutelin, making the average Cd concentration of brown rice decreased by 82.96%. These results comprehensively indicate that in situations with similar soil backgrounds, the recommended application of solid CMP and foliar PDP can alleviate the toxicity of Cd by reducing its absorption and remobilization.
Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Fósforo/metabolismo , Cadmio/análisis , Fertilizantes/análisis , Oryza/metabolismo , Contaminantes del Suelo/análisisRESUMEN
The reduction of cadmium (Cd) accumulation in rice grains through biofortification of essential nutrients like zinc (Zn) and silicon (Si) is an area of study that has gained significant attention. However, there is limited understanding of the mechanism of Zn/Si interaction on Cd accumulation and remobilization in rice plants. This work used a pot experiment to examine the effects of Zn and Si applied singly or in combination on the physiological metabolism of Cd in different rice organs under Cd stress. The results revealed that: Zn/Si application led to a significant decrease in root Cd concentration and reduce the value of Tf Soil-Root in filling stage. The content of phytochelatin (PCs, particularly PC2) and glutathione (GSH) in roots, top and basal nodes were increased with Zn/Si treatment application. Furthermore, Zn/Si treatment promoted the distribution of Cd in cell wall during Cd stress. These findings suggest that Zn/Si application facilitates the compartmentalization of Cd within subcellular structures and enhances PCs production in vegetative organs, thereby reducing Cd remobilization. Zn/Si treatment upregulated the metabolism of amino acid components involved in osmotic regulation, secondary metabolite synthesis, and plant chelating peptide synthesis in vegetative organs. Additionally, it significantly decreased the accumulation of Cd in globulin, albumin, and glutelin, resulting in an average reduction of 50.87% in Cd concentration in milled rice. These results indicate that Zn/Si nutrition plays a crucial role in mitigating heavy metal stress and improving the nutritional quality of rice by regulating protein composition and coordinating amino acid metabolism balance.
Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Zinc/metabolismo , Silicio/farmacología , Silicio/metabolismo , Metales Pesados/metabolismo , Glutatión/metabolismo , Oryza/metabolismo , Aminoácidos/metabolismo , Contaminantes del Suelo/metabolismo , SueloRESUMEN
Heavy metals such as cadmium (Cd) in farmland soil not only affect crop production, but also endanger human health through the food chain. Rice is the main food crop with the strongest ability to absorb Cd, remediation techniques to reduce soil uptake and grain accumulation of Cd are urgently required, for which the application of foliar spraying seems to be a convenient and auspicious method. This study clarified the effects of nitrogen (N), zinc (Zn), 24-epibrassionlide (EBL) and their combined application on the growth performance and physiological characteristics of Cd and Zn in rice plants under Cd stress. Experimental results showed that N and its combination with Zn, EBL treatments promoted rice growth and yield, especially raised the yield level by 81.12% under N + EBL treatment. Additionally, three EBL treatments (EBL, N + EBL, Zn + EBL) significantly reduced the TF values of Cd in TF stems-grains, TF leaves-grains and TF glumes-grains by 42.70%, 43.67% and 50.33%, while the EF soil-roots under Zn and N + Zn treatments was the lowest, which decreased by 55.39% and 57.71%, respectively. Further, the application of N, Zn, EBL and their combined treatments significantly increased glutathione (GSH) and phytochelatins (PCs) content as well as enhanced Cd distribute into cell walls of rice shoots and roots by 15.18% and 13.20%, respectively. In addition, N, Zn, EBL and their combined application increased Zn concentration, free amino acid and glutelin content, and decreased the Cd accumulation in albumin, glutelin and globulin, thus lowered Cd concentration in grains by 27.55%, 58.29% and 51.56%, respectively. These results comprehensive suggest that the possibility of N management combined with Zn or EBL application for maintaining high yield and alleviating Cd stress by regulating the absorption and remobilization process under mild stress.
Asunto(s)
Oryza , Contaminantes del Suelo , Humanos , Zinc/análisis , Cadmio/análisis , Oryza/química , Contaminantes del Suelo/análisis , Suelo/químicaRESUMEN
Auxin/indoleacetic acid (Aux/IAA) proteins play an important regulatory role in the developmental process of plants and their responses to stresses. A previous study has shown that constitutive expression of OsIAA18, an Aux/IAA transcription factor gene of rice improved salt and osmotic tolerance in transgenic Arabidopsis plants. However, little work is known about the regulatory functions of the OsIAA18 gene in regulating the abiotic stress tolerance of rice. In this study, the OsIAA18 gene was introduced into the rice cultivar, Zhonghua 11 and the OsIAA18 overexpression in rice plants exhibited significantly enhanced salt and drought tolerance compared to the wild type (WT). Moreover, overexpression of OsIAA18 in rice increased endogenous levels of abscisic acid (ABA) and the overexpression of OsIAA18 in rice plants showed hypersensitivity to exogenous ABA treatment at both the germination and postgermination stages compared to WT. Overexpression of OsIAA18 upregulated the genes involved in ABA biosynthesis and signaling pathways, proline biosynthesis pathway, and reactive oxygen species (ROS)-scavenging system in the overexpression of OsIAA18 in rice plants under salt and drought stresses. Proline content, superoxide dismutase (SOD), and peroxidase (POD) activities were significantly increased, whereas malonaldehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radical (O2 -) content were significantly decreased in the transgenic plants under salt and drought stresses. Taken together, we suggest that OsIAA18 plays a positive role in drought and salt tolerance by regulating stress-induced ABA signaling. The OsIAA18 gene has a potential application in genetically modified crops with enhanced tolerance to abiotic stresses.