Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Angew Chem Int Ed Engl ; 58(27): 9204-9209, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31132208

RESUMEN

Synthesis of low-dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high-yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent-grade common sodium-containing compounds, including NaCl, NaHCO3 , Na2 CO3 , and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na-based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal-free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.

2.
Phys Chem Chem Phys ; 20(6): 3876-3881, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29319080

RESUMEN

Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

3.
Nanotechnology ; 28(24): 24LT01, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28485304

RESUMEN

Here, we report the fabrication of aligned carbon nanotube (A-CNT)/conducting polymer (CP) heterostructures with both uniform conformal and periodic beaded polymer morphologies via oxidative chemical vapor deposition of poly(ethylenedioxythiophene). Periodic beaded CP morphologies are realized utilizing the Plateau-Rayleigh instability to transform the original uniform conformal film, yielding a beaded CP morphology with a >50% enhancement in specific surface area (SSA). Modeling indicates that this SSA increase originates from the internal volume of the A-CNTs becoming available for adsorption, and that these internal A-CNT surfaces, if they could be made accessible to electrolyte ions, could lead to >30% enhancement of specific gravimetric and volumetric capacitances of current state-of-the-art A-CNT/CP heterostructures.

4.
Nanotechnology ; 28(5): 05LT01, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28033120

RESUMEN

Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically aligned carbon nanotube (VA-CNT) forests non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from [Formula: see text] tubes cm-2 to [Formula: see text] tubes cm-2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics.

5.
Carbon N Y ; 125: 63-75, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29170562

RESUMEN

As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

6.
Nanotechnology ; 27(3): 035701, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26636342

RESUMEN

The promise of enhanced and tailored properties motivates the study of one-dimensional nanomaterials, especially aligned carbon nanotubes (A-CNTs), for the reinforcement of polymeric materials. While CNTs have remarkable theoretical properties, previous work on aligned CNT polymer matrix nanocomposites (A-PNCs) reported mechanical properties that are orders of magnitude lower than those predicted by rule of mixtures. This large difference primarily originates from the morphology of the CNTs, because the CNTs that comprise the A-PNCs have significant local curvature commonly referred to as waviness. Here we present a simulation framework capable of analyzing 10(5) wavy CNTs with realistic three-dimensional morphologies to quantify the impact of waviness on the effective elastic modulus contribution of wavy CNTs. The simulation results show that due to the low shear modulus of the reinforcing CNT 'fibers', and large ([Formula: see text]) compliance contribution of the shear deformation mode, waviness reduces the effective stiffness contribution of the A-CNTs by two to three orders of magnitude. Also, the mechanical property predictions resulting from the simulation framework outperform those previously reported using finite element analysis since representative descriptions of the morphology are required to accurately predict properties of the A-PNCs. Further work to quantify the morphology of A-PNCs in three-dimensions, simulate their full non-isotropic constitutive relations, and predict their failure mechanisms is planned.

7.
Phys Chem Chem Phys ; 18(2): 694-9, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26658525

RESUMEN

Existing theories for quantifying the morphology of nanofibers (NFs) in aligned arrays either neglect or assume a simple functional form for the curvature of the NFs, commonly known as the NF waviness. However, since such assumptions cannot adequately describe the waviness of real NFs, errors that can exceed 10% in the predicted inter-NF separation can result. Here we use a theoretical framework capable of simulating >10(5) NFs with stochastic three-dimensional morphologies to quantify NF waviness on an easily accessible measure of the morphology, the inter-NF spacing, for a range of NF volume fractions. The presented scaling of inter-NF spacing with waviness is then used to study the morphology evolution of aligned carbon nanotube (A-CNT) arrays during packing, showing that the effective two-dimensional coordination number of the A-CNTs increases much faster than previously reported during close packing, and that hexagonal close packing can successfully describe the packing morphology of the A-CNTs at volume fractions greater than 40 vol%.

8.
J Am Chem Soc ; 136(51): 17808-17, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25487041

RESUMEN

By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38624137

RESUMEN

The Mode I, Mode II, and mixed-mode interlaminar failure behavior of a thin-ply (54 gsm) carbon fiber-epoxy laminated composite reinforced by 20 µm tall z-direction-aligned carbon nanotubes (CNTs), comprising ∼50 billion CNT fibers per cm2, is analyzed following J-integral-based data reduction methods. The inclusion of aligned CNTs in the ply interfaces provides enhanced crack resistance, resulting in sustained crack deflection from the reinforced interlaminar region to the intralaminar region of the adjacent plies, i.e., the CNTs drive the crack from the interlaminar region into the plies. The CNTs do not appreciably increase the interlaminar thickness or laminate weight and preserve the intralaminar microfiber morphology. Improvements of 34 and 62% on the Mode I and Mode II initiation fracture toughness, respectively, are observed. This type of interlaminar nanoreinforcement effectively drives crack propagation from the interface to within the ply where the crack propagates parallel to the interlaminar region, providing new insight into previously reported strength and fatigue performance increases. These findings extend to industries where lightweight and durable materials are critical for improving the structural efficiency.

10.
ACS Appl Mater Interfaces ; 16(19): 25280-25293, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712718

RESUMEN

Composite laminates utilizing autoclave-grade carbon fiber-reinforced plastic (CFRP) prepreg were manufactured using a polymer nanoporous network (NPN) interlayer that generates capillary pressure in lieu of pressure from an autoclave. The polymer nanofiber NPN film is integrated into the interlaminar region and is shown to eliminate voids in a vacuum-bag-only (VBO) curing process. After a preliminary investigation of the effect of NPN thickness on the interlaminar region and performance, an 8 µm thick polymer NPN was selected for a scaled manufacturing demonstration. Combining the polymer NPN with "out-of-oven" (OoO) electrothermal heating of a carbon nanotube (CNT)-heated tool, a 0.6 × 0.6 m void-free plate is successfully manufactured. OoO cure enables an accelerated cure cycle, which reduces the cure time by 35% compared to the manufacturer-recommended cure cycle (MRCC). X-ray microcomputed tomography (µ-CT) reveals that the laminates are void-free and of identical quality to autoclave-cured specimens. An array of mechanical tests including tension, compression, open-hole compression (OHC), tension-bearing (bolt-bearing), and compression after impact, reveal that the accelerated NPN-cured composites were broadly equivalent, with some instances of improved properties, relative to the autoclave-cured parts, e.g., OHC strength increased by 5%. With reduced capital costs, energy consumption, and increased throughput, the facile polymer NPN-enabled out-of-autoclave (OoA) fabrication method is shown to be a practical and attractive alternative to conventional autoclave fabrication.

11.
Phys Chem Chem Phys ; 15(11): 4033-40, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23386243

RESUMEN

The average inter-wire spacing in aligned nanowire systems strongly influences both the physical and transport properties of the bulk material. Because most studies assume that the nanowire coordination is constant, a model that provides an analytical relationship between the average inter-wire spacings and measurable physical properties, such as nanowire volume fraction, is necessary. Here we report a continuous coordination number model with an analytical relationship between the average nanowire coordination, diameter, and volume fraction. The model is applied to vertically aligned carbon nanotube (VACNT) and nanofiber (VACNF) arrays, and the effective nanowire coordination number is established from easily accessible measures, such as the nanowire spacing and diameter. VACNT analysis shows that the coordination number increases with increasing nanowire volume fraction, leading the measured inter-CNT spacing values to deviate by as much as 13% from the spacing values predicted by the typically assumed hexagonal packing. VACNF analysis suggests that, by predicting an inter-fiber spacing that is within 6% of the reported value, the continuous coordination model outperforms both square and hexagonal packing in real nanowire arrays. Using this model, the average inter-wire spacing of nanowire arrays can be predicted, thus allowing more precise morphology descriptions, and thereby supporting the development of more accurate structure-property models of bulk materials comprised of aligned nanowires.


Asunto(s)
Nanocables/química , Microscopía Electrónica de Rastreo , Modelos Teóricos , Nanofibras/química , Nanotubos de Carbono/química
12.
ACS Appl Mater Interfaces ; 15(32): 38750-38758, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37535803

RESUMEN

Semiconductor packaging based on an epoxy molding compound (EMC) currently has several disadvantages including warpage, limited processing area, and variability that all negatively affect cost and production yield. We propose a facile EMC molding process method using a flash electro-thermal carbon fiber heating (FE-CH) device based on carbon fiber-based papers to manufacture an EMC molded to a copper substrate (EMC/Cu bi-layer package) via Joule heating, and using this device, a modified cure cycle that combines the conventional cure cycle (CCC) with rapid cooling was performed using FE-CH to reduce the curvature of the EMC/Cu bi-layer package. Compared to the conventional hot press process, which uses 3.17 MW of power, the FE-CH process only uses 32.87 kW, resulting in a power consumption reduction of over 100 times when following the CCC. Furthermore, the FE-CH-cured EMC/Cu bi-layer package exhibits mechanical properties equivalent to those of a hot press-cured specimen, including the degree of cure, elastic modulus, curvature, bonding temperature, residual strain, and peel strength. The modified cure cycle using the FE-CH results in a 31% reduction in residual strain, a 32% reduction in curvature, and a 47% increase in peel strength compared to the CCC, indicating that this new process method is very promising for reducing a semiconductor package's price by reducing the process cost and warpage.

13.
ACS Appl Mater Interfaces ; 15(13): 17029-17044, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958023

RESUMEN

The excellent intrinsic properties of aligned nanofibers, such as carbon nanotubes (CNTs), and their ability to be easily formed into multifunctional 3D architectures motivate their use for a variety of commercial applications, such as batteries, chemical sensors for environmental monitoring, and energy harvesting devices. While controlling nanofiber adhesion to the growth substrate is essential for bulk-scale manufacturing and device performance, experimental approaches and models to date have not addressed tuning the CNT array-substrate adhesion strength with thermal processing conditions. In this work, facile "one-pot" thermal postgrowth processing (at temperatures Tp = 700-950 °C) is used to study CNT-substrate pull-off strength for millimeter-tall aligned CNT arrays. CNT array pull-off from the flat growth substrate (Fe/Al2O3/SiO2/Si wafers) via tensile testing shows that the array fails progressively, similar to the response of brittle microfiber bundles in tension. The pull-off strength evolves nonmonotonically with Tp in three regimes, first increasing by 10 times through Tp = 800 °C due to graphitization of disordered carbon at the CNT-catalyst interface, and then decreasing back to a weak interface through Tp = 950 °C due to diffusion of the Fe catalyst into the substrate, Al2O3 crystallization, and substrate cracking. Failure is observed to occur at the CNT-catalyst interface below 750 °C, and the CNTs themselves break during pull-off after higher Tp processing, leaving residual CNTs on the substrate. Morphological and chemical analyses indicate that the Fe catalyst remains on the substrate after pull-off in all regimes. This work provides new insights into the interfacial interactions responsible for nanofiber-substrate adhesion and allows tuning to increase or decrease array strength for applications such as advanced sensors, energy devices, and nanoelectromechanical systems (NEMS).

14.
ACS Appl Mater Interfaces ; 15(8): 11024-11032, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696132

RESUMEN

Semiconductor packaging continues to reduce in thickness following the overall thinning of electronic devices such as smartphones and tablets. As the package becomes thinner, the warpage of the semiconductor package becomes more important due to the reduced bending stiffness and driven by thermal residual stresses and thermal expansion mismatch during the epoxy molding compound (EMC) curing to create the package. To address this packaging reliability issue, in this study, we developed a modified cure cycle that adds a rapid cooling step to the conventional cure cycle (CCC) to enhance the reliability of the EMC molded to a copper substrate (EMC/Cu bi-layer package) by lowering the bonding temperature of the EMC/Cu bi-layer package. Modeling of the package via Timoshenko theory including effective cure shrinkage allowed the rapid cooling step to be quantified and confirmed via experiments. The modified cure cycle resulted in a 26% reduction in residual strain, a 27% reduction in curvature, and a 40% increase in peel strength compared to the CCC, suggesting that this is an effective new method for managing warping effects in such packaged structures.

15.
Adv Mater ; 34(11): e2107817, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34800056

RESUMEN

Four-dimensional quantitative characterization of heterogeneous materials using in situ synchrotron radiation computed tomography can reveal 3D sub-micrometer features, particularly damage, evolving under load, leading to improved materials. However, dataset size and complexity increasingly require time-intensive and subjective semi-automatic segmentations. Here, the first deep learning (DL) convolutional neural network (CNN) segmentation of multiclass microscale damage in heterogeneous bulk materials is presented, teaching on advanced aerospace-grade composite damage using ≈65 000 (trained) human-segmented tomograms. The trained CNN machine segments complex and sparse (<<1% of volume) composite damage classes to ≈99.99% agreement, unlocking both objectivity and efficiency, with nearly 100% of the human time eliminated, which traditional rule-based algorithms do not approach. The trained machine is found to perform as well or better than the human due to "machine-discovered" human segmentation error, with machine improvements manifesting primarily as new damage discovery and segmentation augmentation/extension in artifact-rich tomograms. Interrogating a high-level network hyperparametric space on two material configurations, DL is found to be a disruptive approach to quantitative structure-property characterization, enabling high-throughput knowledge creation (accelerated by two orders of magnitude) via generalizable, ultrahigh-resolution feature segmentation.

16.
ACS Appl Mater Interfaces ; 14(6): 8361-8372, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119271

RESUMEN

We present carbon nanotube (CNT)-reinforced polypropylene random copolymer (PPR) nanocomposites for the additive manufacturing of self-sensing piezoresistive materials via fused filament fabrication. The PPR/CNT feedstock filaments were synthesized through high shear-induced melt blending with controlled CNT loading up to 8 wt % to enable three-dimensional (3D) printing of nanoengineered PPR/CNT composites. The CNTs were found to enhance crystallinity (up to 6%) in PPR-printed parts, contributing to the overall CNT-reinforcement effect that increases both stiffness and strength (increases of 56% in modulus and 40% in strength at 8 wt % CNT loading). Due to electrical conductivity (∼10-4-10-1 S/cm with CNT loading) imparted to the PPR by the CNT network, multifunctional in situ strain and damage sensing in 3D-printed CNT/PPR bulk composites and lattice structures are revealed. A useful range of gauge factors (k) is identified for strain sensing (ks = 10.1-17.4) and damage sensing (kd = 20-410) across the range of CNT loadings for the 0° print direction. Novel auxetic re-entrant and S-unit cell lattices are printed, with multifunctionality demonstrated as strain- and damage-sensing in tension. The PPR/CNT multifunctional nanocomposite lattices demonstrated here exhibit tunable strain and damage sensitivity and have application in biomedical engineering for the creation of self-sensing patient-specific devices such as orthopedic braces, where the ability to sense strain (and stress) can provide direct information for optimization of brace design/fit over the course of treatment.

17.
ACS Nano ; 16(11): 18178-18186, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36314378

RESUMEN

Boron nitride nanotubes (BNNTs) possess a broad range of applications because of several engineering-relevant properties, including high specific strength and stiffness, thermal stability, and transparency to visible light. The morphology of these nanoscale fibers must be controlled to maximize such properties, which can be achieved by synthesizing long aligned arrays of crystalline hexagonal boron nitride (hBN) nanotubes. Herein, we synthesize high-quality millimeter length, vertically aligned (VA-) BNNTs using free-standing carbon nanotube (CNT) arrays as scaffolds. In addition to high optical transparency of the VA-BNNTs, we also demonstrate several micro- and macrostructures of BNNTs via patterning and/or postprocessing of the arrays, including engineering of either disconnected or interconnected tubes in VA-, horizontally aligned (HA-), or coherently buckled BNNTs. The internanotube spacings and interconnections between aligned BNNT can thus be tailored to create BN macrostructures with complex shapes and advantaged morphologies for hierarchical materials and devices.

18.
Small ; 7(8): 1061-7, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21413145

RESUMEN

Solid materials, such as silicon, glass, and polymers, dominate as structural elements in microsystems including microfluidics. Porous elements have been limited to membranes sandwiched between microchannel layers or polymer monoliths. This paper reports the use of micropatterned carbon-nanotube forests confined inside microfluidic channels for mechanically and/or chemically capturing particles ranging over three orders of magnitude in size. Nanoparticles below the internanotube spacing (80 nm) of the forest can penetrate inside the forest and interact with the large surface area created by individual nanotubes. For larger particles (>80 nm), the ultrahigh porosity of the nanotube elements reduces the fluid boundary layer and enhances particle-structure interactions on the outer surface of the patterned nanoporous elements. Specific biomolecular recognition is demonstrated using cells (≈10 µm), bacteria (≈1 µm), and viral-sized particles (≈40 nm) using both effects. This technology can provide unprecedented control of bioseparation processes to access bioparticles of interest, opening new pathways for both research and point-of-care diagnostics.


Asunto(s)
Microfluídica/métodos , Nanopartículas/química , Tamaño de la Partícula , Permeabilidad , Porosidad
19.
Nanotechnology ; 22(18): 185502, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21427475

RESUMEN

Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.

20.
Nano Lett ; 10(7): 2395-400, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20503983

RESUMEN

Interfaces dominate the thermal resistances in aligned carbon nanotube arrays. This work uses nanosecond thermoreflectance thermometry to separate interface and volume resistances for 10 microm thick aligned SWNT films coated with Al, Ti, Pd, Pt, and Ni. We interpret the data by defining the nanotube-metal engagement factor, which governs the interface resistance and is extracted using the measured film heat capacity. The metal-SWNT and SWNT-substrate resistances range between 3.8 and 9.2 mm(2)K/W and 33-46 mm(2)K/W, respectively. The temperature dependency of the heat capacity data, measured between 125 and 300 K, is in good agreement with theoretical predictions. The temperature dependence demonstrated by the metal-SWNT interface resistance data suggests inelastic phonon transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA