Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Lett ; 19(5): 20230025, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37161295

RESUMEN

Locomotor impairment during pregnancy is a well-documented cost of reproduction, but most empirical studies have not incorporated ecological complexity, such as locomotion on sloping inclines rather than horizontal surfaces. Biomechanical factors suggest that carrying a heavy burden-including shifts in the body's centre of mass-may impair locomotor ability even more when an animal is running uphill. If so, then measuring costs of reproduction on horizontal racetracks may underestimate these costs in nature for arboreal species. To evaluate this prediction, we measured the pregnancy-induced reduction in speed for jacky dragons (Amphibolurus muricatus) at inclines ranging from 0 to 45°. Both pregnancy and steeper slopes reduced lizard performance, but pregnancy did not exacerbate the locomotor decrement on steeper racetracks. An ability to maintain mobility on steep slopes during pregnancy may be a target of selection in arboreal taxa. To understand the evolutionary context of locomotion-based costs of reproduction, we also need studies on the relationship between organismal performance and ecologically relevant measures such as predation risk.


Asunto(s)
Lagartos , Reproducción , Animales , Femenino , Evolución Biológica , Alcanfor , Locomoción , Árboles
2.
Environ Microbiol ; 24(12): 6336-6347, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36164972

RESUMEN

Environmental oestrogens pose serious concerns for ecosystems through their effects on organismal survival and physiology. The gut microbiome is highly vulnerable to environmental influence, yet the effects of oestrogens on gut homeostasis are unknown because they are poorly studied in wildlife populations. To determine the influence of environmental oestrogens (i.e., xenoestrogens) on the diversity and abundance of gut microbiota, we randomly assigned 23 hatchling American alligators (Alligator mississippiensis) to three ecologically relevant treatments (control, low, and high oestrogen concentrations) for 10 weeks. We predicted that xenoestrogen exposure would decrease microbial diversity and abundance within the digestive tract and that this effect would be dose-dependent. Microbial samples were collected following diet treatments and microbial diversity was determined using 16S rRNA gene-sequencing. Individuals in oestrogen-treatment groups had decreased microbial diversity, but a greater relative abundance of operational taxonomic units than those in the control group. In addition, this effect was dose-dependent; as individuals were exposed to more oestrogen, their microbiome became less diverse, less rich and less even. Findings from this study suggest that oestrogen contamination can influence wildlife populations at the internal microbial-level, which may lead to future deleterious health effects.


Asunto(s)
Caimanes y Cocodrilos , Microbioma Gastrointestinal , Microbiota , Animales , Caimanes y Cocodrilos/genética , Estradiol/farmacología , Estrógenos , ARN Ribosómico 16S/genética , Xenobióticos
3.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258602

RESUMEN

During the vulnerable stages of early life, most ectothermic animals experience hourly and diel fluctuations in temperature as air temperatures change. While we know a great deal about how different constant temperatures impact the phenotypes of developing ectotherms, we know remarkably little about the impacts of temperature fluctuations on the development of ectotherms. In this study, we used a meta-analytic approach to compare the mean and variance of phenotypic outcomes from constant and fluctuating incubation temperatures across reptile species. We found that fluctuating temperatures provided a small benefit (higher hatching success and shorter incubation durations) at cool mean temperatures compared with constant temperatures, but had a negative effect at warm mean temperatures. In addition, more extreme temperature fluctuations led to greater reductions in embryonic survival compared with moderate temperature fluctuations. Within the limited data available from species with temperature-dependent sex determination, embryos had a higher chance of developing as female when developing in fluctuating temperatures compared with those developing in constant temperatures. With our meta-analytic approach, we identified average mean nest temperatures across all taxa where reptiles switch from receiving benefits to incurring costs when incubation temperatures fluctuate. More broadly, our study indicates that the impact of fluctuating developmental temperature on some phenotypes in ectothermic taxa are likely to be predictable via integration of developmental temperature profiles with thermal performance curves.


Asunto(s)
Frío , Reptiles , Animales , Femenino , Fenotipo , Temperatura , Factores de Tiempo
4.
J Anim Ecol ; 91(4): 845-857, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114034

RESUMEN

The composition of founding populations plays an important role in colonisation dynamics and can influence population growth during early stages of biological invasion. Specifically, founding populations with small propagules (i.e. low number of founders) are vulnerable to the Allee effect and have reduced likelihood of establishment compared to those with large propagules. The founding sex ratio can also impact establishment via its influence on mating success and offspring production. Our goal was to test the effects of propagule size and sex ratio on offspring production and annual population growth following introductions of a non-native lizard species (Anolis sagrei). We manipulated propagule composition on nine small islands, then examined offspring production, population growth and survival rate of founders and their descendants encompassing three generations. By the third reproductive season, per capita offspring production was higher on islands seeded with a relatively large propagule size, but population growth was not associated with propagule size. Propagule sex ratio did not affect offspring production, but populations with a female-biased propagule had positive growth, whereas those with a male-biased propagule had negative growth in the first year. Populations were not affected by propagule sex ratio in subsequent years, possibly due to rapid shifts towards balanced (or slightly female biased) population sex ratios. Overall, we show that different components of population fitness have different responses to propagule size and sex ratio in ways that could affect early stages of biological invasion. Despite these effects, the short life span and high fecundity of A. sagrei likely helped small populations to overcome Allee effects and enabled all populations to successfully establish. Our rare experimental manipulation of propagule size and sex ratio can inform predictions of colonisation dynamics in response to different compositions of founding populations, which is critical in the context of population ecology and invasion dynamics.


Asunto(s)
Lagartos , Razón de Masculinidad , Animales , Femenino , Masculino , Dinámica Poblacional , Estaciones del Año
5.
J Exp Biol ; 223(Pt 19)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32778564

RESUMEN

Natural thermal environments are notably complex and challenging to mimic in controlled studies. Consequently, our understanding of the ecological relevance and underlying mechanisms of organismal responses to thermal environments is often limited. For example, studies of thermal developmental plasticity have provided key insights into the ecological consequences of temperature variation, but most laboratory studies use treatments that do not reflect natural thermal regimes. While controlling other important factors, we compared the effects of naturally fluctuating temperatures with those of commonly used laboratory regimes on development of lizard embryos and offspring phenotypes and survival. We incubated eggs in four treatments: three that followed procedures commonly used in the literature, and one that precisely mimicked naturally fluctuating nest temperatures. To explore context-dependent effects, we replicated these treatments across two seasonal regimes: relatively cool temperatures from nests constructed early in the season and warm temperatures from late-season nests. We show that natural thermal fluctuations have a relatively small effect on developmental variables but enhance hatchling performance and survival at cooler temperatures. Thus, natural thermal fluctuations are important for successful development and simpler approximations (e.g. repeated sine waves, constant temperatures) may poorly reflect natural systems under some conditions. Thus, the benefits of precisely replicating real-world temperatures in controlled studies may outweigh logistical costs. Although patterns might vary according to study system and research goals, our methodological approach demonstrates the importance of incorporating natural variation into controlled studies and provides biologists interested in thermal ecology with a framework for validating the effectiveness of commonly used methods.


Asunto(s)
Lagartos , Animales , Frío , Fenotipo , Estaciones del Año , Temperatura
6.
J Anim Ecol ; 89(5): 1242-1253, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994721

RESUMEN

Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems. Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life-history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment). To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season. In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among-individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life-history theory. The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late-produced offspring likely enhances maternal fitness.


Asunto(s)
Rasgos de la Historia de Vida , Lagartos , Animales , Femenino , Laboratorios , Reproducción , Estaciones del Año
7.
Biol Lett ; 16(1): 20190716, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31937216

RESUMEN

Extreme heat events are becoming more common as a result of anthropogenic global change. Developmental plasticity in physiological thermal limits could help mitigate the consequences of thermal extremes, but data on the effects of early temperature exposure on thermal limits later in life are rare, especially for vertebrate ectotherms. We conducted an experiment that to our knowledge is the first to isolate the effect of egg (i.e. embryonic) thermal conditions on adult heat tolerance in a reptile. Eggs of the lizard Anolis sagrei were incubated under one of three fluctuating thermal regimes that mimicked natural nest environments and differed in mean and maximum temperatures. After emergence, all hatchlings were raised under common garden conditions until reproductive maturity, at which point heat tolerance was measured. Egg mortality was highest in the warmest treatment, and hatchlings from the warmest treatment tended to have greater mortality than those from the cooler treatments. Despite evidence that incubation temperatures were stressful, we found no evidence that incubation treatment influenced adult heat tolerance. Our results are consistent with a low capacity for organisms to increase their physiological heat tolerance via plasticity, and emphasize the importance of behavioural and evolutionary processes as mechanisms of resilience to extreme heat.


Asunto(s)
Lagartos , Termotolerancia , Animales , Evolución Biológica , Ambiente , Calor , Temperatura
8.
J Exp Biol ; 222(Pt 19)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31527177

RESUMEN

Most studies of thermal tolerance use adults, but early-life stages (e.g. embryos) are often more sensitive to thermal agitation. Studies that examine effects on embryos rarely assess the potential for thermal tolerance to change with ontogeny or how effects differ among sympatric species, and often utilize unrealistic temperature treatments. We used thermal fluctuations from nests within the urban-heat island to determine how thermal tolerance of embryos changes across development and differs among two sympatric lizard species (Anolis sagrei and Anoliscristatellus). We applied fluctuations that varied in frequency and magnitude at different times during development and measured effects on embryo physiology and survival, and hatchling morphology, growth and survival. Thermal tolerance differed between the species by ∼2°C: embryos of A. sagrei, a lizard that prefers warmer, open-canopy microhabitats, were more robust to thermal stress than embryos of A. cristatellus, which prefers cooler, closed-canopy microhabitats. Moreover, thermal tolerance changed through development; however, the nature of this change differed between the species. For A. cristatellus, thermal tolerance was greatest mid-development. For A. sagrei, the relationship was not statistically clear. The greatest effects of thermal stress were on embryo and hatchling survival and embryo physiology. Hatchling morphology and growth were less affected. Inter-specific responses and the timing of stochastic thermal events with respect to development have important effects on embryo mortality. Thus, research that integrates ecologically meaningful thermal treatments, considers multiple life-history stages and examines interspecific responses will be critical to make robust predictions of the impacts of global change on wildlife.


Asunto(s)
Embrión no Mamífero/fisiología , Calor , Islas , Lagartos/fisiología , Simpatría/fisiología , Termotolerancia/fisiología , Animales , Ciudades , Femenino , Frecuencia Cardíaca/fisiología , Lagartos/anatomía & histología , Modelos Biológicos , Probabilidad , Tamaño de la Muestra , Análisis de Supervivencia
9.
Oecologia ; 191(3): 555-564, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31624957

RESUMEN

Given that sperm production can be costly, theory predicts that males should optimally adjust the quantity and/or quality of their sperm in response to their social environment to maximize their paternity success. Although experiments demonstrate that males can alter their ejaculates in response to manipulations of the social environment and studies show that ejaculate traits covary with social environment across populations, it is unknown whether individual variation in sperm traits corresponds to natural variation found within wild populations. Using an island population of brown anole lizards (Anolis sagrei), we tested the prediction that sperm traits (sperm count, sperm morphology, sperm velocity) respond to natural variation in the risk of sperm competition, as inferred from the local density and operational sex ratio (OSR) of conspecifics. We found that males living in high-density areas of the island produced relatively larger sperm midpieces, smaller sperm heads, and lower sperm counts. Sperm traits were unrelated to OSR after accounting for the covariance between OSR and density. Our findings broaden the implications of sperm competition theory to intrapopulation social environment variation by showing that sperm count and sperm morphology vary with fine-scale differences in density within a single wild population.


Asunto(s)
Lagartos , Animales , Islas , Masculino , Fenotipo , Razón de Masculinidad , Conducta Sexual Animal , Espermatozoides
10.
J Hered ; 110(4): 411-421, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30982894

RESUMEN

Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio. However, organisms with environmental sex determination (ESD) are particularly vulnerable to experiencing skewed sex ratios when environmental conditions vary. Theoretical work has modeled sex-ratio dynamics for animals with ESD with regard to 2 traits predicted to be responsive to sex-ratio selection: 1) maternal oviposition behavior and 2) sensitivity of embryonic sex determination to environmental conditions, and much research has since focused on how these traits influence offspring sex ratios. However, relatively few studies have provided estimates of univariate quantitative genetic parameters for these 2 traits, and the existence of phenotypic or genetic covariances among these traits has not been assessed. Here, we leverage studies on 3 species of reptiles (2 turtle species and a lizard) with temperature-dependent sex determination (TSD) to assess phenotypic covariances between measures of maternal oviposition behavior and thermal sensitivity of the sex-determining pathway. These studies quantified maternal behaviors that relate to nest temperature and sex ratio of offspring incubated under controlled conditions. A positive covariance between these traits would enhance the efficiency of sex-ratio selection when primary sex ratio is unbalanced. However, we detected no such covariance between measures of these categories of traits in the 3 study species. These results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in embryos might evolve independently. Such information is critical to understand how animals with TSD will respond to rapidly changing environments that induce sex-ratio selection.


Asunto(s)
Evolución Biológica , Desarrollo Embrionario , Conducta Materna , Procesos de Determinación del Sexo , Razón de Masculinidad , Animales , Ambiente , Femenino , Masculino , Comportamiento de Nidificación , Carácter Cuantitativo Heredable , Temperatura , Tortugas
11.
Proc Natl Acad Sci U S A ; 113(23): 6502-7, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27140634

RESUMEN

Lifespan and aging rates vary considerably across taxa; thus, understanding the factors that lead to this variation is a primary goal in biology and has ramifications for understanding constraints and flexibility in human aging. Theory predicts that senescence-declining reproduction and increasing mortality with advancing age-evolves when selection against harmful mutations is weaker at old ages relative to young ages or when selection favors pleiotropic alleles with beneficial effects early in life despite late-life costs. However, in many long-lived ectotherms, selection is expected to remain strong at old ages because reproductive output typically increases with age, which may lead to the evolution of slow or even negligible senescence. We show that, contrary to current thinking, both reproduction and survival decline with adult age in the painted turtle, Chrysemys picta, based on data spanning >20 y from a wild population. Older females, despite relatively high reproductive output, produced eggs with reduced hatching success. Additionally, age-specific mark-recapture analyses revealed increasing mortality with advancing adult age. These findings of reproductive and mortality senescence challenge the contention that chelonians do not age and more generally provide evidence of reduced fitness at old ages in nonmammalian species that exhibit long chronological lifespans.


Asunto(s)
Envejecimiento/fisiología , Tortugas/fisiología , Animales , Animales Salvajes/fisiología , Evolución Biológica , Femenino , Humanos , Longevidad/fisiología , Reproducción/fisiología , Selección Genética , Tortugas/genética , Tortugas/crecimiento & desarrollo
12.
J Exp Biol ; 221(Pt 14)2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021761

RESUMEN

Effects of global change (i.e. urbanization, climate change) on adult organisms are readily used to predict the persistence of populations. However, effects on embryo survival and patterns of development are less studied, even though embryos are particularly sensitive to abiotic conditions that are altered by global change (e.g. temperature). In reptiles, relatively warm incubation temperatures increase developmental rate and often enhance fitness-relevant phenotypes, but extremely high temperatures cause death. Due to the urban heat island effect, human-altered habitats (i.e. cities) potentially create unusually warm nest conditions that differ from adjacent natural areas in both mean and extreme temperatures. Such variation may exert selection pressures on embryos. To address this, we measured soil temperatures in places where the Puerto Rican crested anole lizard (Anolis cristatellus) nests in both city and forest habitats. We bred anoles in the laboratory and subjected their eggs to five incubation treatments that mimicked temperature regimes from the field, three of which included brief exposure to extremely high temperatures (i.e. thermal spikes) measured in the city. We monitored growth and survival of hatchlings in the laboratory for 3 months and found that warmer, city temperatures increase developmental rate, but brief, thermal spikes reduce survival. Hatchling growth and survival were unaffected by incubation treatment. The urban landscape can potentially create selection pressures that influence organisms at early (e.g. embryo) and late life stages. Thus, research aimed at quantifying the impacts of urbanization on wildlife populations must include multiple life stages to gain a comprehensive understanding of this important aspect of global change.


Asunto(s)
Desarrollo Embrionario/fisiología , Calor/efectos adversos , Lagartos/fisiología , Mortalidad , Animales , Ciudades , Cambio Climático , Embrión no Mamífero/fisiología , Florida , Lagartos/embriología
13.
J Therm Biol ; 65: 119-124, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28343564

RESUMEN

The transformation of natural habitats into urban landscapes dramatically alters thermal environments, which in turn, can impact local biota. Ectothermic organisms that are oviparous are particularly sensitive to these altered environments because their embryos cannot behaviorally thermoregulate and the surrounding environment determines the temperature experienced during development. We studied the effects of urban and forested thermal environments on embryo development and hatchling phenotypes in two non-native lizards (Anolis sagrei and A. cristatellus) in metropolitan Miami, Florida. To determine if embryos from urban and forested sites are adapted to their respective thermal environments, we incubated eggs from each site using temperatures that simulate likely nest conditions in both urban and forested environments. For both species, urban thermal environments accelerated embryonic development, but had no impact on egg survival or any of the phenotypic traits that were measured (e.g., body size, running performance, and locomotor behavior). Our results provide no evidence that embryos from urban and forested sites are adapted to their respective thermal environments. Instead, the lack of any major effects suggest that embryos of both species are physiologically robust with respect to novel environments, which could have facilitated their success in establishing in non-native ranges and in human-modified landscapes.


Asunto(s)
Especies Introducidas , Lagartos/embriología , Animales , Regulación de la Temperatura Corporal , Ecosistema , Embrión no Mamífero/fisiología , Femenino , Lagartos/fisiología , Masculino , Óvulo/fisiología , Temperatura , Urbanización
14.
Biol Lett ; 10(3): 20130782, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24621555

RESUMEN

Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture-mark-recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.


Asunto(s)
Inundaciones , Tortugas/fisiología , Animales , Cambio Climático , Femenino , Illinois , Dinámica Poblacional , Reproducción , Estaciones del Año
15.
Gen Comp Endocrinol ; 206: 16-23, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24954686

RESUMEN

Steroid hormones affect sex determination in a variety of vertebrates. The feminizing effects of exposure to estradiol and the masculinizing effects of aromatase inhibition during development are well established in a broad range of vertebrate taxa, but paradoxical findings are occasionally reported. Four independent experiments were conducted on two turtle species with temperature-dependent sex determination (Chrysemys picta and Chelydra serpentina) to quantify the effects of egg incubation temperature, estradiol, and an aromatase inhibitor on offspring sex ratios. As expected, the warmer incubation temperatures induced female development and the cooler temperatures produced primarily males. However, application of an aromatase inhibitor had no effect on offspring sex ratios, and exogenous applications of estradiol to eggs produced male offspring across all incubation temperatures. These unexpected results were remarkably consistent across all four experiments and both study species. Elevated concentrations of estradiol could interact with androgen receptors or inhibit aromatase expression, which might result in relatively high testosterone concentrations that lead to testis development. These findings add to a short list of studies that report paradoxical effects of steroid hormones, which addresses the need for a more comprehensive understanding of the role of sex steroids in sexual development.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Óvulo/efectos de los fármacos , Análisis para Determinación del Sexo , Razón de Masculinidad , Temperatura , Tortugas/fisiología , Animales , Aromatasa/química , Aromatasa/metabolismo , Inhibidores de la Aromatasa/farmacología , Femenino , Humanos , Masculino , Ovario/efectos de los fármacos , Óvulo/citología , Óvulo/metabolismo
16.
Ecology ; 94(2): 336-45, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23691653

RESUMEN

Identifying the relative contributions of genetic, maternal, and environmental factors to phenotypic variation is critical for evaluating the evolutionary potential of fitness-related traits. We employed a novel two-step cross-fostering experiment to quantify the relative contributions of clutch (i.e., maternal identity) and maternally chosen nest sites to phenotypic variation during three early life stages (incubation, hibernation, dispersal) of the painted turtle (Chrysemys picta). By translocating eggs between nests in the field, we demonstrated that both clutch and nest site contribute to phenotypic variation at hatching. Because hatchling C. picta hibernate inside nests, we performed a second cross-foster to decouple the effects of the incubation nest with that of the hibernation nest. Incubation nest explained little variation in phenotypes at spring emergence, but winter nest site was important. We found no evidence that mothers select nest sites specific to reaction norms of their own offspring, suggesting that females may select nest sites with microhabitats that broadly meet similar requirements across the population. After hibernation, we released hatchlings to assess performance and phenotypic selection during dispersal. Hibernation nest site influenced physiological performance during dispersal, and we detected nonlinear selection on hatchling carapace length. Our experiment demonstrates that nest-site choice has substantial effects on phenotypic variation and fitness across multiple early life stages.


Asunto(s)
Ecosistema , Aptitud Genética , Comportamiento de Nidificación , Tortugas/crecimiento & desarrollo , Tortugas/fisiología , Animales , Demografía , Femenino , Hibernación , Tortugas/genética
17.
Oecologia ; 172(3): 679-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23196739

RESUMEN

Orientation and dispersal to suitable habitat affects fitness in many animals, but the factors that govern these behaviors are poorly understood. In many turtle species, hatchlings must orient and disperse to suitable aquatic habitat immediately after emergence from subterranean nests. Thus, the location of nest sites relative to aquatic habitats ideally should be associated with the direction of hatchling dispersal. At our study site, painted turtles (Chrysemys picta) nest to the west (on an island) and east (on the mainland) of a wetland, which determines the direction that hatchlings must travel to reach suitable aquatic habitat. To determine if hatchling orientation is intrinsically influenced by the location where their mothers nest, we employed a two-part cross-fostering experiment in the field, whereby half the eggs laid in mainland nests were swapped with half the eggs laid in island nests. Moreover, because C. picta hatchlings overwinter inside their nests, we performed a second cross-fostering experiment to fully decouple the effects of (1) the maternally chosen nest location, (2) the embryonic developmental location, and (3) the overwinter location. We released hatchlings into a circular arena in the field and found that turtles generally dispersed in a westerly direction, regardless of the maternally chosen nest location and independent of the locations of embryonic development and overwintering. Although this westerly direction was towards suitable aquatic habitat, we could not distinguish whether naïve hatchling turtles (i) use environmental cues/stimuli to orient their movement, or (ii) have an intrinsic bias to orient west in the absence of stimuli. Nevertheless, these findings suggest that the orientation behavior of naïve hatchling turtles during terrestrial dispersal is not dependent upon the location of maternally-chosen nest sites.


Asunto(s)
Ecosistema , Oviposición , Tortugas/fisiología , Animales , Femenino
18.
Integr Comp Biol ; 63(3): 597-609, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37218690

RESUMEN

The microbiome is an interactive and fluctuating community of microbes that colonize and develop across surfaces, including those associated with organismal hosts. A growing number of studies exploring how microbiomes vary in ecologically relevant contexts have recognized the importance of microbiomes in affecting organismal evolution. Thus, identifying the source and mechanism for microbial colonization in a host will provide insight into adaptation and other evolutionary processes. Vertical transmission of microbiota is hypothesized to be a source of variation in offspring phenotypes with important ecological and evolutionary implications. However, the life-history traits that govern vertical transmission are largely unexplored in the ecological literature. To increase research attention to this knowledge gap, we conducted a systematic review to address the following questions: (1) How often is vertical transmission assessed as a contributor to offspring microbiome colonization and development? (2) Do studies have the capacity to address how maternal transmission of microbes affects the offspring phenotype? (3) How do studies vary based on taxonomy and life history of the study organism, as well as the experimental, molecular, and statistical methods employed? Extensive literature searches reveal that many studies examining vertical transmission of microbiomes fail to collect whole microbiome samples from both maternal and offspring sources, particularly for oviparous vertebrates. Additionally, studies should sample functional diversity of microbes to provide a better understanding of mechanisms that influence host phenotypes rather than solely taxonomic variation. An ideal microbiome study incorporates host factors, microbe-microbe interactions, and environmental factors. As evolutionary biologists continue to merge microbiome science and ecology, examining vertical transmission of microbes across taxa can provide inferences on causal links between microbiome variation and phenotypic evolution.


Asunto(s)
Herencia Materna , Microbiota , Animales
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220155, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37427473

RESUMEN

Species with large geographical ranges provide an excellent model for studying how different populations respond to dissimilar local conditions, particularly with respect to variation in climate. Maternal effects, such as nest-site choice greatly affect offspring phenotypes and survival. Thus, maternal behaviour has the potential to mitigate the effects of divergent climatic conditions across a species' range. We delineated natural nesting areas of six populations of painted turtles (Chrysemys picta) that span a broad latitudinal range and quantified spatial and temporal variation in nest characteristics. To quantify microhabitats available for females to choose, we also identified sites within the nesting area of each location that were representative of available thermal microhabitats. Across the range, females nested non-randomly and targeted microhabitats that generally had less canopy cover and thus higher nest temperatures. Nest microhabitats differed among locations but did not predictably vary with latitude or historic mean air temperature during embryonic development. In conjunction with other studies of these populations, our results suggest that nest-site choice is homogenizing nest environments, which buffers embryos from thermally induced selection and could slow embryonic evolution. Thus, although effective at a macroclimatic scale, nest-site choice is unlikely to compensate for novel stressors that rapidly increase local temperatures. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Asunto(s)
Madres , Tortugas , Animales , Femenino , Humanos , Comportamiento de Nidificación , Tortugas/genética , Temperatura , Calor
20.
Integr Zool ; 17(4): 550-566, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34002932

RESUMEN

Vertebrate embryos require access to water; however, many species nest in terrestrial habitats that vary considerably in moisture content. Oviparous, non-avian reptiles have served as models to understand how environmental factors, like moisture availability, influence development because eggs are often exposed to prevailing environments in the absence of parental care. Though much research demonstrates the importance of water absorption by eggs, many ecological factors that influence moisture availability in natural nests have received little attention. For example, the type of substrate in which nests are constructed is understudied. We experimentally incubated eggs of the brown anole lizard (Anolis sagrei) in 2 naturally occurring nest substrates that were treated with varying amounts of water to determine how natural substrates influence development at different moisture concentrations. One substrate consisted of sand and crushed seashells and the other was mostly organic material (i.e. decayed plant material). Both are common nesting substrates at our field site. When controlling for water uptake by eggs, we found that egg survival and hatchling phenotypes were similar between substrates; however, embryos developed more quickly in the sand/shell substrate than the organic substrate, indicating substrate-specific effects on embryo physiology. These results demonstrate that different natural substrates can result in similar developmental outcomes if the water available to eggs is comparable; however, some aspects of development, like developmental rate, are affected by the type of substrate, independent of water availability. Further study is required to determine how natural substrates influence embryo physiology independent of water content.


Asunto(s)
Lagartos , Arena , Animales , Ecosistema , Lagartos/fisiología , Comportamiento de Nidificación/fisiología , Fenotipo , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA