Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 90(21): 12567-12573, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30231202

RESUMEN

rHIgM22 is a recombinant human monoclonal IgM designed to promote remyelination, and it is currently in Phase I clinical trials in patients with multiple sclerosis (MS). In animal models of demyelination, a single low dose of rHIgM22 stimulates oligodendrocyte maturation, induces remyelination, preserves axons, and slows the decline of locomotor deficits. Natural autoantibodies like rHIgM22 typically bind to multiple antigens with weak affinity. rHIgM22 binds to oligodendrocytes and myelin. Because the antigens for rHIgM22 is prevalent within and exclusive to central nervous system (CNS) myelin, we used CNS myelin particles in combination with surface plasmon resonance to determine the kinetic and affinity constants for the interaction of rHIgM22 to myelin. We found that both the serum and recombinant forms of the antibody bind to myelin with very small dissociation constants in the 100 pM range, which is highly unusual for natural autoantibodies. The extraordinary affinity between rHIgM22 and myelin may explain why such a low effective dose can stimulate CNS repair in animal models of demyelination and underlie the accumulation of rHIgM22 in the CSF in treated MS patients by targeting myelin.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Inmunoglobulina M/metabolismo , Vaina de Mielina/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Cinética , Ratones Endogámicos C57BL , Unión Proteica , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
2.
PLoS Pathog ; 11(12): e1005311, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633895

RESUMEN

For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.


Asunto(s)
Genes Virales/inmunología , Inmunidad Innata/inmunología , ARN Polimerasa Dependiente del ARN/inmunología , Proteínas Virales/inmunología , Animales , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad Innata/genética , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Picornaviridae/genética , Picornaviridae/inmunología , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virosis/inmunología , Virosis/prevención & control
3.
J Neuroinflammation ; 13(1): 94, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27126523

RESUMEN

BACKGROUND: Whereas demyelination underlies early neurological symptoms in multiple sclerosis (MS), axonal damage is considered critical for permanent chronic deficits. Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic induced demyelinating disease (TMEV-IDD) with progressive axonal loss and neurologic dysfunction similar to progressive forms of MS. We previously reported that treatment of chronic TMEV-IDD mice with a neurite outgrowth-promoting natural human antibody, HIgM12, improved brainstem NAA concentrations and preserved functional motor activity. In order to translate this antibody toward clinical trial, we generated a fully human recombinant form of HIgM12, rHIgM12, determined the optimal in vivo dose for functional improvement in TMEV-IDD, and evaluated the functional preservation of descending spinal cord axons by retrograde labeling. FINDINGS: SJL/J mice at 45 to 90 days post infection (dpi) were studied. A single intraperitoneal dose of 0.25 mg/kg of rHIgM12 per mouse is sufficient to preserve motor function in TMEV-IDD. The optimal dose was 10 mg/kg. rHIgM12 treatment protected the functional transport in spinal cord axons and led to 40 % more Fluoro-Gold-labeled brainstem neurons in retrograde transport studies. This suggests that axons are not only present but also functionally competent. rHIgM12-treated mice also contained more mid-thoracic (T6) spinal cord axons than controls. CONCLUSIONS: This study confirms that a fully human recombinant neurite outgrowth-promoting monoclonal IgM is therapeutic in a model of progressive MS using multiple reparative readouts. The minimum effective dose is similar to that of a remyelination-promoting monoclonal human IgM discovered by our group that is presently in clinical trials for MS.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Axones/efectos de los fármacos , Inmunoglobulina M/farmacología , Esclerosis Múltiple/patología , Fármacos Neuroprotectores/farmacología , Animales , Axones/patología , Tronco Encefálico/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Médula Espinal/patología , Theilovirus
4.
J Neuroinflammation ; 13(1): 293, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27855706

RESUMEN

BACKGROUND: We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. METHODS: Human class I A11+ and B27+ transgenic human beta-2 microglobulin positive (Hß2m+) mice of the H-2 b background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, ß2m0) and class II-deficient (mouse Aß0) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. RESULTS: Following infection with TMEV, a picornavirus, the Aß0.ß2m0 mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hß2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11+ and B27+ mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27+ transgenic mice showed almost complete repair of the virus-induced brain injury, but A11+ mice conversely showed persistent severe hippocampal and cortical injury. CONCLUSIONS: The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.


Asunto(s)
Infecciones por Cardiovirus/patología , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Antígenos de Histocompatibilidad Clase I/metabolismo , Theilovirus/fisiología , Análisis de Varianza , Animales , Anticuerpos/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Antígeno HLA-A11/metabolismo , Antígeno HLA-B27/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
5.
J Neurochem ; 134(5): 865-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25866077

RESUMEN

CNS regeneration is a desirable goal for diseases of brain and spinal cord. Current therapeutic strategies for the treatment of multiple sclerosis (MS) aim to eliminate detrimental effects of the immune system, so far without reversing disability or affecting long-term prognosis in patients. Approachable molecular targets that stimulate CNS repair are not part of the clinical praxis or have not been identified yet. The purpose of this study was to identify the molecular target of the human monoclonal antibody HIgM12. HIgM12 reverses motor deficits in chronically demyelinated mice, a model of MS. Here, we identified polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM) as the antigen for HIgM12 by using different NCAM knockout strains and through PSA removal from the NCAM protein core. Antibody binding to CNS tissue and primary cells, antibody-mediated cell adhesion, and neurite outgrowth on HIgM12-coated nitrocellulose was detected only in the presence of PSA as assessed by western blotting, immunoprecipitation, immunocytochemistry, and histochemistry. We conclude that HIgM12 mediates its in vivo and in vitro effects through binding to PSA and has the potential to be an effective therapy for MS and neurodegenerative diseases. The human antibody HIgM12 stimulates neurite outgrowth in vitro and promotes function in chronically demyelinated mice, a model of multiple sclerosis. The cellular antigen for HIgM12 was undetermined. Here, we identified polysialic acid attached to NCAM (neural cell adhesion molecule) as the cellular target for HIgM12. This includes glial fibrillary acidic protein (GFAP)-positive mouse astrocytes (GFAP, red; HIgM12, green; DAPI, blue) among other cell types of the central nervous system. These findings indicate a new strategy for the treatment of neuro-motor disorders including multiple sclerosis.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos/inmunología , Antígeno CD56/inmunología , Enfermedades Autoinmunes Desmielinizantes SNC/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ácidos Siálicos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Antígeno CD56/química , Antígeno CD56/genética , Adhesión Celular , Células Cultivadas , Cerebelo/citología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Glicosilación/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/inmunología , Regeneración Nerviosa , Neuraminidasa/farmacología , Neuritas/efectos de los fármacos , Enfermedades Neurodegenerativas/inmunología , Neuroglía/citología , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
6.
J Neuroinflammation ; 12: 83, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25924771

RESUMEN

BACKGROUND: Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. FINDINGS: (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. CONCLUSIONS: This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Ácido Aspártico/análogos & derivados , Tronco Encefálico/metabolismo , Glicoproteínas de Membrana/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Proteínas del Envoltorio Viral/inmunología , Animales , Ácido Aspártico/metabolismo , Axones/efectos de los fármacos , Encéfalo/patología , Tronco Encefálico/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Esclerosis Múltiple/etiología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Estadísticas no Paramétricas , Theilovirus/inmunología
7.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798641

RESUMEN

While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14). Using aptamer-based proteomics, we identify significant differences in the CSF proteome between lumbar, subarachnoid, and ventricular CSF. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome. Proteomic data are provided with individual clinical annotations as a resource for the field. One Sentence Summary: Glioma cerebrospinal fluid (CSF) accessed intra-operatively and longitudinally via devices can reveal impacts of treatment and anatomical location.

8.
J Clin Immunol ; 33 Suppl 1: S50-6, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22990667

RESUMEN

We have discovered a role for natural autoantibodies in central nervous system repair, remyelination and axon protection. These natural human antibodies are of the immunoglobulin M (IgM) isotype, and they bind to the surface of neural cells. The epitope of the antibody includes sialic acid because treatment with sialidase disrupts the binding. A fully human recombinant form of one of these IgMs, rHIgM12, has the same properties as the serum-derived IgM. rHIgM12 enhanced polarized axonal outgrowth from primary neurons when presented as a substrate in vitro and improved motor functions in chronically Theiler's virus-infected SJL mice, a model of MS. rHIgM12 bound to neuronal surfaces and induced cholesterol and ganglioside (GM1) clustering, indicating that rHIgM12 functions through a mechanism of axonal membrane stabilization. Our work demonstrates that a natural human neuron-binding IgM can regulate membrane domain dynamics. This antibody has the potential to improve neurologic disease.


Asunto(s)
Inmunoglobulina M/inmunología , Microdominios de Membrana/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Neuronas/inmunología , Animales , Axones/efectos de los fármacos , Axones/inmunología , Axones/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina M/metabolismo , Inmunoglobulina M/farmacología , Microdominios de Membrana/efectos de los fármacos , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/inmunología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
9.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831620

RESUMEN

High-grade gliomas are the most common and aggressive adult primary brain tumors with a median survival of only 12-15 months. Current standard therapy consists of maximal safe surgical resection followed by DNA-damaging agents, such as irradiation and chemotherapy that can delay but not prevent inevitable recurrence. Some have interpreted glioma recurrence as evidence of glioma stem cells which persist in a relatively quiescent state after irradiation and chemotherapy, before the ultimate cell cycle re-entry and glioma recurrence. Conversely, latent cancer cells with a therapy-induced senescent phenotype have been shown to escape senescence, giving rise to more aggressive stem-like tumor cells than those present in the original tumor. Therefore, approaches are needed to either eliminate or keep these glioma initiating cells in a senescent state for a longer time to prolong survival. In our current study, we demonstrate that the radiation-induced cell cycle inhibitor P21 can provide a powerful route to induce cell death in short-term explants of PDXs derived from three molecularly diverse human gliomas. Additionally, cells not killed by P21 overexpression were maintained in a stable senescent state for longer than control cells. Collectively, these data suggest that P21 activation may provide an attractive therapeutic target to improve therapeutic outcomes.

10.
Fluids Barriers CNS ; 20(1): 94, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115038

RESUMEN

BACKGROUND: Microdialysis is a technique that can be utilized to sample the interstitial fluid of the central nervous system (CNS), including in primary malignant brain tumors known as gliomas. Gliomas are mainly accessible at the time of surgery, but have rarely been analyzed via interstitial fluid collected via microdialysis. To that end, we obtained an investigational device exemption for high molecular weight catheters (HMW, 100 kDa) and a variable flow rate pump to perform microdialysis at flow rates amenable to an intra-operative setting. We herein report on the lessons and insights obtained during our intra-operative HMW microdialysis trial, both in regard to methodological and analytical considerations. METHODS: Intra-operative HMW microdialysis was performed during 15 clinically indicated glioma resections in fourteen patients, across three radiographically diverse regions in each patient. Microdialysates were analyzed via targeted and untargeted metabolomics via ultra-performance liquid chromatography tandem mass spectrometry. RESULTS: Use of albumin and lactate-containing perfusates impacted subsets of metabolites evaluated via global metabolomics. Additionally, focal delivery of lactate via a lactate-containing perfusate, induced local metabolic changes, suggesting the potential for intra-operative pharmacodynamic studies via reverse microdialysis of candidate drugs. Multiple peri-operatively administered drugs, including levetiracetam, cefazolin, caffeine, mannitol and acetaminophen, could be detected from one microdialysate aliquot representing 10 min worth of intra-operative sampling. Moreover, clinical, radiographic, and methodological considerations for performing intra-operative microdialysis are discussed. CONCLUSIONS: Intra-operative HMW microdialysis can feasibly be utilized to sample the live human CNS microenvironment, including both metabolites and drugs, within one surgery. Certain variables, such as perfusate type, must be considered during and after analysis. Trial registration NCT04047264.


Asunto(s)
Glioma , Humanos , Microdiálisis , Glioma/cirugía , Líquido Extracelular/metabolismo , Ácido Láctico/metabolismo , Catéteres , Microambiente Tumoral
11.
medRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909488

RESUMEN

D-2-hydroxyglutarate (D-2-HG) is a well-established oncometabolite of isocitrate dehydrogenase (IDH) mutant gliomas. While prior studies have demonstrated that D-2-HG is elevated in the cerebrospinal fluid (CSF) of patients with IDH-mutant gliomas 1,2 , no study has determined if CSF D-2-HG can provide a plausible method to evaluate therapeutic response. We are obtaining CSF samples from consenting patients during their disease course via intra-operative collection and Ommaya reservoirs. D-2-HG and D/L-2-HG consistently decreased following tumor resection and throughout chemoradiation in patients monitored longitudinally. Our early experience with this strategy demonstrates the potential for intracranial CSF D-2-HG as a monitoring biomarker for IDH-mutant gliomas.

12.
Commun Biol ; 6(1): 653, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340056

RESUMEN

The extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry. Among 162 named metabolites, guanidinoacetate (GAA) was 126.32x higher in enhancing tumour than in adjacent brain. 48 additional metabolites were 2.05-10.18x more abundant in enhancing tumour than brain. With exception of GAA, and 2-hydroxyglutarate in IDH-mutant gliomas, differences between non-enhancing tumour and brain microdialysate were modest and less consistent. The enhancing, but not the non-enhancing glioma metabolome, was significantly enriched for plasma-associated metabolites largely comprising amino acids and carnitines. Our findings suggest that metabolite diffusion through a disrupted blood-brain barrier may largely define the enhancing extracellular glioma metabolome. Future studies will determine how the altered extracellular metabolome impacts glioma behaviour.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Barrera Hematoencefálica/metabolismo , Glioma/metabolismo , Encéfalo/metabolismo , Metaboloma , Microambiente Tumoral
13.
NPJ Precis Oncol ; 7(1): 126, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030881

RESUMEN

High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.

14.
Anal Chem ; 84(14): 6031-9, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22762372

RESUMEN

Multiple sclerosis is a progressive neurological disorder that results in the degradation of myelin sheaths that insulate axons in the central nervous system. Therefore promotion of myelin repair is a major thrust of multiple sclerosis treatment research. Two mouse monoclonal natural autoantibodies, O1 and O4, promote myelin repair in several mouse models of multiple sclerosis. Natural autoantibodies are generally polyreactive and predominantly of the IgM isotype. The prevailing paradigm is that because they are polyreactive, these antibodies bind antigens with low affinities. Despite their wide use in neuroscience and glial cell research, however, the affinities and kinetic constants of O1 and O4 antibodies have not been measured to date. In this work, we developed a membrane biosensing platform based on surface plasmon resonance in gold nanohole arrays with a series of surface modification techniques to form myelin-mimicking lipid bilayer membranes to measure both the association and dissociation rate constants for O1 and O4 antibodies binding to their myelin lipid antigens. The ratio of rate constants shows that O1 and O4 bind to galactocerebroside and sulfated galactocerebroside, respectively, with unusually small apparent dissociation constants (K(D) ≈ 0.9 nM) for natural autoantibodies. This is approximately one to 2 orders of magnitude lower than typically observed for the highest affinity natural autoantibodies. We propose that the unusually high affinity of O1 and O4 to their targets in myelin contributes to the mechanism by which they signal oligodendrocytes and induce central nervous system repair.


Asunto(s)
Autoanticuerpos/metabolismo , Materiales Biomiméticos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Vaina de Mielina/metabolismo , Nanotecnología/métodos , Resonancia por Plasmón de Superficie/métodos , Animales , Materiales Biomiméticos/química , Inmunoglobulina M/metabolismo , Membrana Dobles de Lípidos/química , Ratones , Vaina de Mielina/fisiología , Oligodendroglía/metabolismo
15.
Adv Exp Med Biol ; 750: 44-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22903665

RESUMEN

Naturally occurring autoantibodies (NAbs) are common in normal humans. The majority of NAbs are IgMs, but a small proportion are IgGs. Therefore a certain portion of pooled whole human IgG (IVIG) can be considered NAbs. While the applications of IVIG to modulate human disease have increased dramatically, the use of IgMs as drugs has lagged. In fact, much of the contaminating IgM component of IVIG is disposed of as waste. However, a number of model studies, including those targeting Alzheimer and multiple sclerosis (MS) suggest that IgMs may better modulate disease at much lower doses than IVIG. Our own studies in a model of MS show that polyclonal human IgM promotes better remyelination than IVIG and that monoclonal IgMs promote greater remyelination than monoclonal IgGs containing identical variable region sequences. We propose that this difference is due to the ability of IgM to cross link cell surface antigens better than IgGs and induce signals in nervous system cells. Monoclonal antibodies (mAbs) that promote remyelination induce a transient Ca(2+) influx in myelin forming cells, whereas IgGs with identical variable sequences do not. MAbs that promote remyelination were identified in human serum and in EBV-immortalized human B-cell lines obtained from normal adults, fetal cord blood, and rheumatoid arthritis and MS patients. Therefore therapeutic mAbs are present and common in normal circulation. All therapeutic mAbs were IgMs and bound to nervous system cells, however, the tissue binding patterns suggest that binding any one of multiple antigens induces repair. An expression vector was constructed that can manufacture gram quantities of recombinant monoclonal human IgM. Therefore the technology exists to determine whether human monoclonal NAbs can modulate human disease. IVIG can modulate neurologic disease, but using IVIG to treat these chronic diseases is unsustainable. A long-term solution is to identify the functional component of IVIG and test whether a recombinant human monoclonal can replicate its efficacy.


Asunto(s)
Enfermedad de Alzheimer/terapia , Autoanticuerpos/inmunología , Inmunoglobulina M/uso terapéutico , Inmunoglobulinas Intravenosas/uso terapéutico , Esclerosis Múltiple/terapia , Enfermedad de Alzheimer/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Linfocitos B/inmunología , Calcio/inmunología , Calcio/metabolismo , Humanos , Inmunización Pasiva , Inmunoglobulina M/inmunología , Inmunoglobulinas Intravenosas/inmunología , Esclerosis Múltiple/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico
16.
Mult Scler J Exp Transl Clin ; 8(2): 20552173221091475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496758

RESUMEN

Background: Recombinant human immunoglobulin M22 (rHIgM22) has promoted remyelination in animal models and was well tolerated in people with clinically stable multiple sclerosis. Objective: Safety/tolerability of a single rHIgM22 dose was investigated following an acute relapse and to determine whether this enhanced CNS/CSF concentrations. Methods: Adults (N = 27) with acute relapse were assigned to rHIgM22 (0.5 or 2.0 mg/kg) or placebo. Study included screening/steroid administration periods and 10 study visits over 6 months. rHIgM22 CSF concentrations were assessed on days 2 and 29. Pharmacokinetic and safety samples were taken for up to 60 days. Assessments included adverse events and other clinical measures. Brain magnetic resonance imaging was performed with/without gadolinium. Results: rHIgM22 CSF levels were consistent with dose-dependent concentration on both days 2 and 29. Infusion was generally well tolerated during an acute relapse. Immunogenicity was mild. Most adverse events did not appear to be dose dependent, were mild/moderate, and were events often associated with multiple sclerosis. Conclusion: Although limited by high variability and small sample size, the data suggest enhanced CNS uptake associated with a drop in CSF levels. This study demonstrated safety of an antibody directed to myelin and oligodendrocytes in the course of active demyelinating disease. Further research into rHIgM22 is warranted.ClinicalTrials.gov: NCT02398461 https://clinicaltrials.gov/ct2/show/study/NCT02398461?term=M22&draw=2&rank=8.

17.
Mol Cancer Res ; 20(6): 938-948, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35191501

RESUMEN

Glioblastoma (GBM) is a rapidly fatal malignancy typically treated with radiation and temozolomide (TMZ), an alkylating chemotherapeutic. These cytotoxic therapies cause oxidative stress and DNA damage, yielding a senescent-like state of replicative arrest in surviving tumor cells. Unfortunately, recurrence is inevitable and may be driven by surviving tumor cells eventually escaping senescence. A growing number of so-called "senolytic" drugs have been recently identified that are defined by their ability to selectively eliminate senescent cells. A growing inventory of senolytic drugs is under consideration for several diseases associated with aging, inflammation, DNA damage, as well as cancer. Ablation of senescent tumor cells after radiation and chemotherapy could help mitigate recurrence by decreasing the burden of residual tumor cells at risk of recurrence. This strategy has not been previously explored for GBM. We evaluated a panel of 10 previously described senolytic drugs to determine whether any could exhibit selective activity against human GBM persisting after exposure to radiation or TMZ. Three of the 10 drugs have known activity against BCL-XL and preferentially induced apoptosis in radiated or TMZ-treated glioma. This senolytic activity was observed in 12 of 12 human GBM cell lines. Efficacy could not be replicated with BCL-2 inhibition or senolytic agents acting against other putative senolytic targets. Knockdown of BCL-XL decreased survival of radiated GBM cells, whereas knockdown of BCL-2 or BCL-W yielded no senolytic effect. IMPLICATIONS: These findings imply that molecularly heterogeneous GBM lines share selective senescence-induced BCL-XL dependency increase the significance and translational relevance of the senolytic therapy for latent glioma.


Asunto(s)
Glioblastoma , Apoptosis , Línea Celular Tumoral , Senescencia Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Senoterapéuticos , Temozolomida/farmacología
18.
J Neurochem ; 119(1): 100-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21824142

RESUMEN

Mouse and human IgMs support neurite extension from primary cerebellar granule neurons. In this study using primary hippocampal and cortical neurons, we demonstrate that a recombinant human IgM, rHIgM12, promotes axon outgrowth by coupling membrane domains (lipid rafts) to microtubules. rHIgM12 binds to the surface of neuron and induces clustering of cholesterol and ganglioside GM1. After cell binding and membrane fractionation, rHIgM12 gets segregated into two pools, one associated with lipid raft fractions and the other with the detergent-insoluble cytoskeleton-containing pellet. Membrane-bound rHIgM12 co-localized with microtubules and co-immuno precipitated with ß3-tubulin. rHIgM12-membrane interaction also enhanced the tyrosination of α-tubulin indicating a stabilization of new neurites. When presented as a substrate, rHIgM12 induced axon outgrowth from primary neurons. We now demonstrate that a recombinant human mAb can induce signals in neurons that regulate membrane lipids and microtubule dynamics required for axon extension. We propose that the pentameric structure of the IgM is critical to cross-link membrane lipids and proteins resulting in signaling cascades.


Asunto(s)
Axones/fisiología , Inmunoglobulina M/fisiología , Microdominios de Membrana/fisiología , Microtúbulos/fisiología , Animales , Caveolina 1/metabolismo , Células Cultivadas , Centrifugación por Gradiente de Densidad , Colesterol/metabolismo , Gangliósido G(M1)/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Neurogénesis/fisiología , Proteínas Recombinantes/farmacología , Transducción de Señal/fisiología , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
19.
J Autoimmun ; 37(2): 144-50, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21624820

RESUMEN

Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. In addition to this plethora of functions, some antibodies express enzymatic activity. Antibodies endowed with enzymatic properties have been described in human autoimmune manifestations in a variety of disorders such as autoimmune thyroiditis, systemic erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), multiple sclerosis (MS) and acquired hemophilia (AH). Antibodies isolated from these conditions were able to specifically hydrolyze thyroglobulin, DNA, RNA, myelin basic protein (MBP), and factor VIII (FVIII) or factor IX (FIX), respectively. The therapeutic relevance of these findings is discussed.


Asunto(s)
Anticuerpos Catalíticos/metabolismo , Autoanticuerpos/metabolismo , Autoantígenos/metabolismo , Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/inmunología , Animales , Anticuerpos Catalíticos/inmunología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Hidrólisis , Inmunoterapia/tendencias
20.
Expert Opin Investig Drugs ; 30(8): 857-876, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34126015

RESUMEN

Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.


Asunto(s)
Esclerosis Múltiple/terapia , Oligodendroglía/citología , Remielinización , Animales , Modelos Animales de Enfermedad , Humanos , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA