Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7953): 652-659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890232

RESUMEN

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Asunto(s)
Productos Agrícolas , Diploidia , Variación Genética , Genoma de Planta , Genómica , Fitomejoramiento , Proteínas de Plantas , Vicia faba , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variaciones en el Número de Copia de ADN/genética , ADN Satélite/genética , Amplificación de Genes/genética , Genes de Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Geografía , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinación Genética , Retroelementos/genética , Semillas/anatomía & histología , Semillas/genética , Vicia faba/anatomía & histología , Vicia faba/genética , Vicia faba/metabolismo
2.
J Agric Food Chem ; 70(30): 9295-9304, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862501

RESUMEN

A major objective in faba bean breeding is to improve its protein quality by selecting cultivars with enhanced desirable physicochemical properties. However, the protein composition of the mature seed is determined by a series of biological processes occurring during seed growth. Thus, any attempt to explain the final seed composition must consider the dynamics of the seed proteome during seed development. Here, we investigated the proteomic profile of developing faba bean seeds across 12 growth stages from 20 days after pollination (DAP) to full maturity. We analyzed trypsin-digested total protein extracts from the seeds at different growth stages by liquid chromatography-tandem mass spectrometry (LC-MS/MS), identifying 1217 proteins. The functional clusters of these proteins showed that, in early growth stages, proteins related to cell growth, division, and metabolism were most abundant compared to seed storage proteins that began to accumulate from 45 DAP. Moreover, label-free quantification of the relative abundance of seed proteins, including important globulin proteins, revealed several distinct temporal accumulation trends among the protein classes. These results suggest that these proteins are regulated differently and require further understanding of the impact of the different environmental stresses occurring at different grain filling stages on the expression and accumulation of these seed storage proteins.


Asunto(s)
Vicia faba , Cromatografía Liquida , Fitomejoramiento , Proteómica , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/química , Espectrometría de Masas en Tándem , Vicia faba/química
3.
J Agric Food Chem ; 68(32): 8535-8544, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32678595

RESUMEN

Faba bean (Vicia faba L.) holds great importance for human and animal nutrition for its high protein content. However, better understanding of its seed protein composition is required in order to develop cultivars that meet market demands for plant proteins with specific quality attributes. In this study, we screened 35 diverse Vicia faba genotypes by employing the one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE) method, and 35 major protein bands obtained from three genotypes with contrasting seed protein profiles were further analyzed by mass spectrometry (MS). Twenty-five of these protein bands (MW range: ∼ 9-107 kDa) had significant (p ≤ 0.05) matches to polypeptides in protein databases. MS analysis showed that most of the analyzed protein bands contained more than one protein type and, in total, over 100 proteins were identified. These included major seed storage proteins such as legumin, vicilin, and convicilin, as well as other protein classes like lipoxygenase, heat shock proteins, sucrose-binding proteins, albumin, and defensin. Furthermore, seed protein extracts were separated by size-exclusion high-performance liquid chromatography (SE-HPLC), and percentages of the major protein classes were determined. On average, legumin and vicilin/convicilin accounted for 50 and 27% of the total protein extract, respectively. However, the proportions of these proteins varied considerably among genotypes, with the ratio of legumin:vicilin/convicilin ranging from 1:1 to 1:3. In addition, there was a significant (p < 0.01) negative correlation between the contents of these major fractions (r = -0.83). This study significantly extends the number of identified Vicia faba seed proteins and reveals new qualitative and quantitative variation in seed protein composition, filling a significant gap in the literature. Moreover, the germplasm and screening methods presented here are expected to contribute in selecting varieties with improved protein content and quality.


Asunto(s)
Proteínas de Plantas/química , Vicia faba/química , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Semillas/química
4.
J Agric Food Chem ; 66(48): 12617-12626, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30403850

RESUMEN

Faba bean ( Vicia faba L.) is one of the foremost candidate crops for simultaneously increasing both sustainability and global supply of plant protein. On a dry matter basis, its seeds contain about 29% protein of which more than 80% consists of globulin storage proteins (vicilin and legumin). However, to achieve optimum utilization of this crop for human and animal nutrition, both protein content and quality have to be improved. Though initial investigations on the heritability of these traits indicated the possibility for genetic improvement, little has been achieved so far, partly due to the lack of genetic information coupled with the complex relationship between protein content and grain yield. This review reports on the current knowledge on Vicia faba seed storage proteins, their structure, composition, and genetic control, and highlights key areas for further improvement of the content and composition of Vicia faba seed storage proteins on the basis of recent advances in Vicia faba genome knowledge and genetic tools.


Asunto(s)
Proteínas de Almacenamiento de Semillas/genética , Vicia faba/genética , Variación Genética , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo , Vicia faba/química , Vicia faba/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA