Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Integr Neurosci ; 23(2): 32, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38419439

RESUMEN

The role of growth hormone (GH) in the central nervous system (CNS) involves neuroprotection, neuroregeneration, formation of axonal projections, control of cognition, and regulation of metabolism. As GH induces insulin-like growth factor-1 (IGF-1) expression in many tissues, differentiating the specific functions of GH and IGF-1 in the organism is a significant challenge. The actions of GH and IGF-1 in neurons have been more extensively studied than their functions in nonneuronal cells (e.g., microglial cells). Glial cells are fundamentally important to CNS function. Microglia, astrocytes, oligodendrocytes, and tanycytes are essential to the survival, differentiation, and proliferation of neurons. As the interaction of the GH/IGF-1 axis with glial cells merits further exploration, our objective for this review was to summarize and discuss the available literature regarding the genuine effects of GH on glial cells, seeking to differentiate them from the role played by IGF-1 action whenever possible.


Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Hormona del Crecimiento/farmacología , Hormona del Crecimiento/fisiología , Microglía/metabolismo , Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338764

RESUMEN

The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.


Asunto(s)
Receptor de Bradiquinina B2 , Tirosina 3-Monooxigenasa , Ratones , Masculino , Femenino , Animales , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Tirosina 3-Monooxigenasa/genética , Bradiquinina/farmacología , Receptor de Bradiquinina B1/metabolismo , Peso Corporal , Ratones Noqueados
3.
J Neurosci ; 40(22): 4309-4322, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32317389

RESUMEN

Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.


Asunto(s)
Exocitosis , Retroalimentación Fisiológica , Hormona del Crecimiento/metabolismo , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina 3-Monooxigenasa/genética
4.
Nutr Cancer ; 73(4): 642-651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32406264

RESUMEN

There is a strong correlation between obesity and cancer. Here, we investigated the influence of IL-6 and gut microbiota of obese mice in melanoma development. We first evaluated B16F10 melanoma growth in preclinical models for obesity: mice deficient for leptin (ob/ob) or adiponectin (AdpKO) and in wild-type mice (WT, C57BL/6J) fed a high-fat diet (HFD; 60% kcal from fat) for 12 weeks. The survival rates of ob/ob and HFD-fed mice were lower than those of their respective controls. AdpKO mice also died earlier than WT control mice. We then verified the involvement of IL-6 signaling in obese mice that were inoculated with melanoma cells. Both ob/ob and AdpKO mice had higher circulating IL-6 levels than wild-type mice. Melanoma tumor volumes in IL-6 KO mice fed an HFD were reduced compared to those of WT mice subjected to the same diet. Also evaluated the effect of microbiota in tumor development. Cohousing and fecal matter transfer experiments revealed that microbiota from ob/ob mice can stimulate tumor development in lean WT mice. Taken together, our data show that in some conditions IL-6 and the gut microbiota are key mediators that link obesity and melanoma.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Animales , Dieta Alta en Grasa/efectos adversos , Interleucina-6 , Leptina , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
5.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576072

RESUMEN

Corticotropin-releasing hormone (CRH) cells are the dominant neuronal population responsive to the growth hormone (GH) in the paraventricular nucleus of the hypothalamus (PVH). However, the physiological importance of GH receptor (GHR) signaling in CRH neurons is currently unknown. Thus, the main objective of the present study was to investigate the consequences of GHR ablation in CRH-expressing cells of male and female mice. GHR ablation in CRH cells did not cause significant changes in body weight, body composition, food intake, substrate oxidation, locomotor activity, glucose tolerance, insulin sensitivity, counterregulatory response to 2-deoxy-D-glucose and ghrelin-induced food intake. However, reduced energy expenditure was observed in female mice carrying GHR ablation in CRH cells. The absence of GHR in CRH cells did not affect anxiety, circadian glucocorticoid levels or restraint-stress-induced corticosterone secretion and activation of PVH neurons in both male and female mice. In summary, GHR ablation, specifically in CRH-expressing neurons, does not lead to major alterations in metabolism, hypothalamic-pituitary-adrenal axis, acute stress response or anxiety in mice. Considering the previous studies showing that central GHR signaling regulates homeostasis in situations of metabolic stress, future studies are still necessary to identify the potential physiological importance of GH action on CRH neurons.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Neuronas/metabolismo , Receptores de Somatotropina/metabolismo , Animales , Ansiedad/metabolismo , Ritmo Circadiano/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Femenino , Ghrelina/farmacología , Glucosa/metabolismo , Hormona del Crecimiento/farmacología , Homeostasis/efectos de los fármacos , Ratones Noqueados , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Estrés Fisiológico/efectos de los fármacos
6.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708962

RESUMEN

Hypercholesterolemia, also called high cholesterol, is a form of hyperlipidemia, which may be a consequence of diet, obesity or diabetes. In addition, increased levels of low-density lipoprotein (LDL) and reduced levels of high-density lipoprotein (HDL) cholesterol are associated with a higher risk of atherosclerosis and coronary heart disease. Thus, controlling cholesterol levels is commonly necessary, and fibrates have been used as lipid-lowering drugs. Gemfibrozil is a fibrate that acts via peroxisome proliferator-activated receptor alpha to promote changes in lipid metabolism and decrease serum triglyceride levels. However, anemia and leukopenia are known side effects of gemfibrozil. Considering that gemfibrozil may lead to anemia and that gemfibrozil acts via peroxisome proliferator-activated receptor alpha, we treated wild-type and peroxisome proliferator-activated receptor alpha-knockout mice with gemfibrozil for four consecutive days. Gemfibrozil treatment led to anemia seven days after the first administration of the drug; we found reduced levels of hemoglobin, as well as red blood cells, white blood cells and a reduced percentage of hematocrits. PPAR-alpha-knockout mice were capable of reversing all of those reduced parameters induced by gemfibrozil treatment. Erythropoietin levels were increased in the serum of gemfibrozil-treated animals, and we also observed an increased expression of hypoxia-inducible factor-2 alpha (HIF-2α) and erythropoietin in renal tissue, while PPAR-alpha knockout mice treated with gemfibrozil did not present increased levels of serum erythropoietin or tissue HIF-2α and erythropoietin mRNA levels in the kidneys. We analyzed bone marrow and found that gemfibrozil reduced erythrocytes and hematopoietic stem cells in wild-type mice but not in PPAR-alpha-knockout mice, while increased colony-forming units were observed only in wild-type mice treated with gemfibrozil. Here, we show for the first time that gemfibrozil treatment leads to anemia and leukopenia via peroxisome proliferator-activated receptor alpha in mice.


Asunto(s)
Anemia/inducido químicamente , Gemfibrozilo/efectos adversos , Células Madre Hematopoyéticas/efectos de los fármacos , Hipolipemiantes/efectos adversos , Leucopenia/inducido químicamente , PPAR alfa/metabolismo , Anemia/metabolismo , Animales , Recuento de Células , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Leucopenia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Mol Cell Biochem ; 428(1-2): 101-108, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28161805

RESUMEN

Cisplatin is a drug widely used in chemotherapy that frequently causes severe renal dysfunction. Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells. Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury. To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin. Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1. Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1. Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue. Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antagonistas del Receptor de Bradiquinina B1/farmacología , Cisplatino/farmacocinética , Proteínas de Transporte de Catión Orgánico/genética , Receptor de Bradiquinina B1/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Proteínas de Transporte de Catión Orgánico/metabolismo , Receptor de Bradiquinina B1/metabolismo
9.
Eur J Immunol ; 44(3): 794-806, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24271843

RESUMEN

Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-ß, and (iv) limited the capacity of DCs to induce syngeneic CD4(+) T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH 17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.


Asunto(s)
Diferenciación Celular/genética , Células Dendríticas/citología , Células Dendríticas/metabolismo , Leptina/deficiencia , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Animales , Células Dendríticas/inmunología , Inmunofenotipificación , Leptina/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , Fenotipo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células Th17/citología , Células Th17/inmunología
10.
Immunol Invest ; 43(2): 113-22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24206426

RESUMEN

Although aging compromises the functionality of macrophages (MΦ) and lymphocytes (LY), and dietary restriction (DR) and exercise partially counterbalance immunosenescence, it is unknown what effects of both strategies have on the functionality of these immune cells. Rats were randomly distributed into adult control (AD), older group (OLD), older submitted to 50% of DR (DR) and older submitted to swimming (EX) (n = 10 in each group). The function of immune cells (proliferative index, phagocytic capacity and H2O2 production), the weight and protein content of lymphoid organs (thymus and spleen), plasma glutamine concentration, interleukins (IL-1, IL-2, IL-6) and, immunoglobulins (IgA and IgG) were analysed. There was an increase of 74% in body weight in aged animals as compared with the AD group, while body weight reduced 19% in the DR as compared with the OLD group. Swimming training stimulated MΦ phagocytosis, while the EX group presented a decrease of the proliferative capacity of LY from the mesenteric lymph nodes (44% and 62%, respectively), when stimulated with ConA and LPS as compared with the old rats. These data demonstrated that DR and exercise affects differentially MΦ and LY function.


Asunto(s)
Envejecimiento/inmunología , Dieta/estadística & datos numéricos , Linfocitos/inmunología , Macrófagos/inmunología , Natación/estadística & datos numéricos , Animales , Peso Corporal , Proliferación Celular , Células Cultivadas , Citocinas/sangre , Peróxido de Hidrógeno/metabolismo , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Fagocitosis , Ratas , Ratas Wistar
11.
Mediators Inflamm ; 2014: 326803, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24987195

RESUMEN

Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight association between metabolism and function in these cells was suggested to introduce the possibility of several pathologies resulting from the inability of lymphocytes to meet their nutrient demands under a given condition. In fact, disruptions in lymphocyte metabolism and function have been observed in different inflammatory, metabolic, and autoimmune pathologies. Regular physical exercise and physical activity offer protection against several chronic pathologies, and this benefit has been associated with the anti-inflammatory and immunomodulatory effects of exercise/physical activity. Chronic exercise induces changes in lymphocyte functionality and substrate metabolism. In the present review, we discuss whether the beneficial effects of exercise on lymphocyte function in health and disease are associated with modulation of the glucose and glutamine metabolic pathways.


Asunto(s)
Ejercicio Físico/fisiología , Glucosa/metabolismo , Glutamina/metabolismo , Linfocitos/metabolismo , Animales , Humanos , Condicionamiento Físico Animal
12.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38728240

RESUMEN

GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain. Thus, the pattern of pSTAT5 immunoreactive cells was analyzed at different time points after IP or intracerebroventricular GH injections. After a systemic GH injection, the first cells expressing pSTAT5 were those near circumventricular organs, such as arcuate nucleus neurons adjacent to the median eminence. Both systemic and central GH injections induced a medial-to-lateral pattern of pSTAT5 immunoreactivity over time because GH-responsive cells were initially observed in periventricular areas and were progressively detected in lateral brain structures. Very few choroid plexus cells exhibited GH-induced pSTAT5. Additionally, Ghr mRNA was poorly expressed in the mouse choroid plexus. In contrast, some tanycytes lining the floor of the third ventricle expressed Ghr mRNA and exhibited GH-induced pSTAT5. The transport of radiolabeled GH into the hypothalamus did not differ between wild-type and dwarf Ghr knockout mice, indicating that GH transport into the mouse brain is GHR independent. Also, single-photon emission computed tomography confirmed that radiolabeled GH rapidly reaches the ventral part of the tuberal hypothalamus. In conclusion, our study provides novel and valuable information about the pattern and mechanisms behind GH transport into the mouse brain.


Asunto(s)
Encéfalo , Hormona del Crecimiento , Receptores de Somatotropina , Factor de Transcripción STAT5 , Animales , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Encéfalo/metabolismo , Hormona del Crecimiento/metabolismo , Ratones , Receptores de Somatotropina/metabolismo , Receptores de Somatotropina/genética , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Fosforilación , Plexo Coroideo/metabolismo , Hipotálamo/metabolismo , Inyecciones Intraventriculares
13.
Mediators Inflamm ; 2013: 395672, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23576853

RESUMEN

As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity.


Asunto(s)
Restricción Calórica , Dieta Alta en Grasa/efectos adversos , Sistema Inmunológico/metabolismo , Condicionamiento Físico Animal/fisiología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Quimiocina CCL2/sangre , Quimiocina CCL5/sangre , Quimiocina CCL5/metabolismo , Citometría de Flujo , Prueba de Tolerancia a la Glucosa , Humanos , Interleucina-1beta/sangre , Interleucina-6/sangre , Células Asesinas Naturales/citología , Masculino , Ratones
14.
Neurosci Lett ; 806: 137236, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37030549

RESUMEN

Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.


Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Ratones , Masculino , Animales , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Hipotálamo/metabolismo , Ratones Noqueados , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
Life Sci ; 301: 120636, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568227

RESUMEN

AIMS: The present study aims to compare the responses between male and female C57BL/6 mice to multiple metabolic challenges to understand the importance of sex in the control of energy homeostasis. MAIN METHODS: Male and female C57BL/6 mice were subjected to nutritional and hormonal challenges, such as food restriction and refeeding, diet-induced obesity, feeding response to ghrelin and leptin, ghrelin-induced growth hormone secretion, and central responsiveness to ghrelin and leptin. The hypothalamic expression of transcripts that control energy homeostasis was also evaluated. KEY FINDINGS: Male mice lost more weight and lean body mass in response to food restriction, compared to females. During refeeding, males accumulated more body fat and exhibited lower energy expenditure and glycemia, as compared to females. Additionally, female mice exhibited a higher protection against diet-induced obesity and related metabolic imbalances in comparison to males. Low dose ghrelin injection elicited higher food intake and growth hormone secretion in male mice, whereas the acute anorexigenic effect of leptin was more robust in females. However, the sex differences in the feeding responses to ghrelin and leptin were not explained by variations in the central responsiveness to these hormones nor by differences in the fiber density from arcuate nucleus neurons. Female, but not male, mice exhibited compensatory increases in hypothalamic Pomc mRNA levels in response to diet-induced obesity. SIGNIFICANCE: Our findings revealed several sexually differentiated responses to metabolic challenges in C57BL/6 mice, highlighting the importance of taking into account sex differences in metabolic studies.


Asunto(s)
Ghrelina , Leptina , Animales , Femenino , Ghrelina/farmacología , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo
16.
Neurosci Lett ; 770: 136402, 2022 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-34929316

RESUMEN

Growth hormone (GH) receptor (GHR) signaling induces the phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the cells of several tissues including in the hypothalamus. During pregnancy, several STAT5-recruiting hormones (e.g., prolactin, GH and placental lactogens) are highly secreted. However, the precise contribution of GHR signaling to the surge of pSTAT5 immunoreactive neurons that occurs in the hypothalamus of pregnant mice is currently unknown. Thus, the objective of the present study was to determine whether GHR expression in neurons is required for inducing pSTAT5 expression in several hypothalamic nuclei during pregnancy. Initially, we demonstrated that late pregnant C57BL/6 mice (gestational day 14 to 18) exhibited increased pulsatile GH secretion compared to virgin females. Next, we confirmed that neuron-specific GHR ablation robustly reduces hypothalamic Ghr mRNA levels and prevents GH-induced pSTAT5 in the arcuate, paraventricular and ventromedial hypothalamic nuclei. Subsequently, the number of pSTAT5 immunoreactive cells was determined in the hypothalamus of late pregnant mice. Although neuron-specific GHR ablation did not affect the number of pSTAT5 immunoreactive cells in the paraventricular nucleus of the hypothalamus, reduced pSTAT5 expression was observed in the arcuate and ventromedial nuclei of pregnant neuron-specific GHR knockouts, compared to control pregnant mice. In summary, a subset of hypothalamic neurons requires GHR signaling to express pSTAT5 during pregnancy. These findings contribute to the understanding of the endocrine factors that affect the activation of transcription factors in the brain during pregnancy.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipotálamo/metabolismo , Preñez/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Proteínas Portadoras/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Placenta/metabolismo , Embarazo
17.
Brain Res ; 1791: 147995, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779583

RESUMEN

Growth hormone (GH)-responsive neurons regulate several homeostatic behaviors including metabolism, energy balance, arousal, and stress response. Therefore, it is possible that GH-responsive neurons play a role in other responses such as CO2/H+-dependent breathing behaviors. Here, we investigated whether central GH receptor (GHR) modulates respiratory activity in conscious unrestrained mice. First, we detected clusters of GH-responsive neurons in the tyrosine hydroxylase-expressing cells in the rostroventrolateral medulla (C1 region) and within the locus coeruleus (LC). No significant expression was detected in phox2b-expressing cells in the retrotrapezoid nucleus. Whole body plethysmography revealed a reduction in the tachypneic response to hypoxia (FiO2 = 0.08) without changing baseline breathing and the hypercapnic ventilatory response. Contrary to the physiological findings, we did not find significant differences in the number of fos-activated cells in the nucleus of the solitary tract (NTS), C1, LC and paraventricular nucleus of the hypothalamus (PVH). Our finding suggests a possible secondary role of central GH action in the tachypneic response to hypoxia in conscious mice.


Asunto(s)
Hipercapnia , Núcleo Solitario , Animales , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Hipoxia/metabolismo , Ratones , Núcleo Solitario/metabolismo
18.
Physiol Rep ; 10(17): e15460, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065891

RESUMEN

The pattern of gonadotropin secretion along the estrous cycle was elegantly described in rats. Less information exists about the pattern of gonadotropin secretion in gonad-intact mice, particularly regarding the follicle-stimulating hormone (FSH). Using serial blood collections from the tail-tip of gonad-intact C57BL/6 mice on the first day of cornification (transition from diestrus to estrus; hereafter called proestrus), we observed that the luteinizing hormone (LH) and FSH surge cannot be consistently detected since only one out of eight females (12%) showed increased LH levels. In contrast, a high percentage of mice (15 out of 21 animals; 71%) exhibited LH and FSH surges on the proestrus when a single serum sample was collected. Mice that exhibited LH and FSH surges on the proestrus showed c-Fos expression in gonadotropin-releasing hormone- (GnRH; 83.4% of co-localization) and kisspeptin-expressing neurons (42.3% of co-localization) of the anteroventral periventricular nucleus (AVPV). Noteworthy, mice perfused on proestrus, but that failed to exhibit LH surge, showed a smaller, but significant expression of c-Fos in GnRH (32.7%) and AVPVKisspeptin (14.0%) neurons. Finally, 96 serial blood samples were collected hourly in eight regular cycling C57BL/6 females to describe the pattern of LH and FSH secretion along the estrous cycle. Small elevations in LH and FSH levels were detected at the time expected for the LH surge. In summary, the present study improves our understanding of the pattern of gonadotropin secretion and the activation of central components of the hypothalamic-pituitary-gonadal axis along the estrous cycle of C57BL/6 female mice.


Asunto(s)
Kisspeptinas , Hormona Luteinizante , Animales , Ciclo Estral , Femenino , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos , Ratas
19.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803590

RESUMEN

Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.


Asunto(s)
Neuronas GABAérgicas , Receptores de Somatotropina , Animales , Femenino , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores de Leptina/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo
20.
Endocrinology ; 163(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395079

RESUMEN

Hypophysiotropic somatostatin (SST) neurons in the periventricular hypothalamic area express growth hormone (GH) receptor (GHR) and are frequently considered as the key neuronal population that mediates the negative feedback loop controlling the hypothalamic-GH axis. Additionally, insulin-like growth factor-1 (IGF-1) may also act at the hypothalamic level to control pituitary GH secretion via long-loop negative feedback. However, to the best of our knowledge, no study so far has tested whether GHR or IGF-1 receptor (IGF1R) signaling specifically in SST neurons is required for the homeostatic control of GH secretion. Here we show that GHR ablation in SST neurons did not impact the negative feedback mechanisms that control pulsatile GH secretion or body growth in male and female mice. The sex difference in hepatic gene expression profile was only mildly affected by GHR ablation in SST neurons. Similarly, IGF1R ablation in SST neurons did not affect pulsatile GH secretion, body growth, or hepatic gene expression. In contrast, simultaneous ablation of both GHR and IGF1R in SST-expressing cells increased mean GH levels and pulse amplitude in male and female mice, and partially disrupted the sex differences in hepatic gene expression. Despite the increased GH secretion in double knockout mice, no alterations in body growth and serum or liver IGF-1 levels were observed. In summary, GHR and IGF1R signaling in SST neurons play a redundant role in the control of GH secretion. Furthermore, our results reveal the importance of GH/IGF-1 negative feedback mechanisms on SST neurons for the establishment of sex differences in hepatic gene expression profile.


Asunto(s)
Hormona del Crecimiento , Hormona de Crecimiento Humana , Animales , Femenino , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA