Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Dev Cell ; 13(1): 43-56, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17609109

RESUMEN

Multiple modes of endocytosis require actin-dependent remodeling of the plasma membrane; however, neither the factors linking these processes nor their mechanisms of action are understood. The sorting nexin, SNX9, localizes to clathrin-coated pits where it interacts with dynamin and functions in clathrin-mediated endocytosis. Here, we demonstrate that SNX9 also localizes to actin-rich structures implicated in fluid-phase uptake, including tubular membranes containing GPI-anchored proteins and dorsal membrane ruffles. Moreover, we show that SNX9 is critical for dorsal ruffle formation and for clathrin-independent, actin-dependent fluid-phase endocytosis. In vitro, SNX9 directly associates with N-WASP, an Arp2/3 complex activator, and stimulates N-WASP/Arp2/3-mediated actin assembly. SNX9-stimulated actin polymerization is greatly enhanced by PI(4,5)P(2)-containing liposomes, due in part to PI(4,5)P(2)-induced SNX9 oligomerization. These results suggest a mechanism for the spatial and temporal regulation of N-WASP-dependent actin assembly and implicate SNX9 in directly coupling actin dynamics to membrane remodeling during multiple modes of endocytosis.


Asunto(s)
Actinas/metabolismo , Endocitosis/fisiología , Fosfatidilinositoles/metabolismo , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Animales , Línea Celular , Dimerización , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato , Fosfatos de Fosfatidilinositol/metabolismo , Estructura Terciaria de Proteína , Conejos , Nexinas de Clasificación , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Dominios Homologos src/fisiología
2.
J Cell Biol ; 177(4): 683-94, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17517963

RESUMEN

Development, angiogenesis, wound healing, and metastasis all involve the movement of cells in response to changes in the extracellular environment. To determine whether caveolin-1 plays a role in cell migration, we have used fibroblasts from knockout mice. Caveolin-1-deficient cells lose normal cell polarity, exhibit impaired wound healing, and have decreased Rho and increased Rac and Cdc42 GTPase activities. Directional persistency of migration is lost, and the cells show an impaired response to external directional stimuli. Both Src inactivation and p190RhoGAP knockdown restore the wild-type phenotype to caveolin-1-deficient cells, suggesting that caveolin-1 stimulates normal Rho GTP loading through inactivation of the Src-p190RhoGAP pathway. These findings highlight the importance of caveolin-1 in the establishment of cell polarity during directional migration through coordination of the signaling of Src kinase and Rho GTPases.


Asunto(s)
Caveolina 1/fisiología , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Proteínas de Unión al GTP rho/fisiología , Familia-src Quinasas/fisiología , Animales , Caveolina 1/deficiencia , Caveolina 1/genética , Línea Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/fisiología , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Transducción de Señal/fisiología
3.
Nat Cell Biol ; 5(7): 599-609, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12833063

RESUMEN

Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions--regulatory and structural. These interactions comprise at least three conserved 'mechanochemical activity modules' that perform similar roles in these diverse cell functions.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Células Eucariotas/metabolismo , Microtúbulos/metabolismo , Animales , División Celular/fisiología , Proteínas Contráctiles/metabolismo , Células Eucariotas/ultraestructura , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Humanos , Cicatrización de Heridas/fisiología
4.
J Cell Biol ; 169(6): 929-39, 2005 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-15955847

RESUMEN

Proteins that in cells specifically bind to growing microtubule plus ends (+TIPs) are thought to play important roles in polarization of the cytoskeleton. However, most +TIPs do not show a bias of their microtubule-binding behavior toward different subcellular regions. Here, we examine the dynamics of the +TIP CLASP in migrating PtK1 epithelial cells. We find that, although CLASPs track microtubule plus ends in the cell body, they dynamically decorate the entire microtubule lattice in the leading edge lamella and lamellipodium. Microtubule lattice binding is mediated by the COOH-terminal region of the CLASP microtubule-binding domain and is regulated downstream of Rac1. Phosphorylation of sites in the NH2-terminal part of the microtubule-binding domain by glycogen synthase kinase 3beta likely regulates the affinity of CLASPs for microtubule lattices. These results demonstrate the striking difference of the microtubule cytoskeleton in the lamella as compared with the cell body and provide the first direct observation of subcellular regulation of a microtubule-associated protein in migrating cells.


Asunto(s)
Movimiento Celular/fisiología , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Sitios de Unión/fisiología , Línea Celular , Polaridad Celular/fisiología , Células Epiteliales/citología , Glucógeno Sintasa Quinasa 3 beta , Microtúbulos/ultraestructura , Fosforilación , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Seudópodos/metabolismo , Seudópodos/ultraestructura
5.
J Cell Biol ; 171(1): 153-64, 2005 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-16216928

RESUMEN

The scattering of Madin-Darby canine kidney cells in vitro mimics key aspects of epithelial-mesenchymal transitions during development, carcinoma cell invasion, and metastasis. Scattering is induced by hepatocyte growth factor (HGF) and is thought to involve disruption of cadherin-dependent cell-cell junctions. Scattering is enhanced on collagen and fibronectin, as compared with laminin1, suggesting possible cross talk between integrins and cell-cell junctions. We show that HGF does not trigger any detectable decrease in E-cadherin function, but increases integrin-mediated adhesion. Time-lapse imaging suggests that tension on cell-cell junctions may disrupt cell-cell adhesion. Varying the density and type of extracellular matrix proteins shows that scattering correlates with stronger integrin adhesion and increased phosphorylation of the myosin regulatory light chain. To directly test the role of integrin-dependent traction forces, substrate compliance was varied. Rigid substrates that produce high traction forces promoted scattering, in comparison to more compliant substrates. We conclude that integrin-dependent actomyosin traction force mediates the disruption of cell-cell adhesion during epithelial cell scattering.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular/fisiología , Células Epiteliales/fisiología , Integrinas/fisiología , Animales , Cadherinas/fisiología , Adhesión Celular , Línea Celular , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Perros , Regulación hacia Abajo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Matriz Extracelular/fisiología , Factor de Crecimiento de Hepatocito/farmacología , Uniones Intercelulares/metabolismo , Riñón/citología , Riñón/metabolismo , Miosina Tipo II/fisiología
6.
J Cell Biol ; 168(4): 619-31, 2005 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-15716379

RESUMEN

The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Células Epiteliales/fisiología , Seudópodos/fisiología , Tropomiosina/metabolismo , Factores Despolimerizantes de la Actina , Proteína 3 Relacionada con la Actina , Animales , Adhesión Celular/fisiología , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Rastreo , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo
7.
Mol Biol Cell ; 18(3): 910-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17192415

RESUMEN

Most sporadic colorectal tumors carry truncation mutations in the adenomatous polyposis coli (APC) gene. The APC protein is involved in many processes that govern gut tissue. In addition to its involvement in the regulation of beta-catenin, APC is a cytoskeletal regulator with direct and indirect effects on microtubules. Cancer-related truncation mutations lack direct and indirect binding sites for microtubules in APC, suggesting that loss of this function contributes to defects in APC-mutant cells. In this study, we show that loss of APC results in disappearance of cellular protrusions and decreased cell migration. These changes are accompanied by a decrease in overall microtubule stability and also by a decrease in posttranslationally modified microtubules in the cell periphery particularly the migrating edge. Consistent with the ability of APC to affect cell shape, the overexpression of APC in cells can induce cellular protrusions. These data demonstrate that cell migration and microtubule stability are linked to APC status, thereby revealing a weakness in APC-deficient cells with potential therapeutic implications.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Movimiento Celular , Microtúbulos/metabolismo , Acetilación , Proteína de la Poliposis Adenomatosa del Colon/química , Línea Celular Tumoral , Forma de la Célula , Extensiones de la Superficie Celular/metabolismo , Fibroblastos/citología , Humanos
8.
J Cell Biol ; 157(5): 839-49, 2002 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-12034775

RESUMEN

It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Animales , Células Cultivadas , Microscopía por Video , Neuronas/metabolismo , Neuronas/ultraestructura , Seudópodos/metabolismo , Caracoles
9.
J Cell Biol ; 161(5): 845-51, 2003 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-12796474

RESUMEN

Actin in migrating cells is regulated by Rho GTPases. However, Rho proteins might also affect microtubules (MTs). Here, we used time-lapse microscopy of PtK1 cells to examine MT regulation downstream of Rac1. In these cells, "pioneer" MTs growing into leading-edge protrusions exhibited a decreased catastrophe frequency and an increased time in growth as compared with MTs further from the leading edge. Constitutively active Rac1(Q61L) promoted pioneer behavior in most MTs, whereas dominant-negative Rac1(T17N) eliminated pioneer MTs, indicating that Rac1 is a regulator of MT dynamics in vivo. Rac1(Q61L) also enhanced MT turnover through stimulation of MT retrograde flow and breakage. Inhibition of p21-activated kinases (Paks), downstream effectors of Rac1, inhibited Rac1(Q61L)-induced MT growth and retrograde flow. In addition, Rac1(Q61L) promoted lamellipodial actin polymerization and Pak-dependent retrograde flow. Together, these results indicate coordinated regulation of the two cytoskeletal systems in the leading edge of migrating cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Células Eucariotas/metabolismo , Microtúbulos/metabolismo , Seudópodos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Microscopía por Video , Mutación/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas p21 Activadas , Proteína de Unión al GTP rac1/genética
10.
J Cell Biol ; 158(1): 31-7, 2002 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12105180

RESUMEN

Interactions between microtubules (MTs) and filamentous actin (f-actin) are involved in directed cell locomotion, but are poorly understood. To test the hypothesis that MTs and f-actin associate with one another and affect each other's organization and dynamics, we performed time-lapse dual-wavelength spinning-disk confocal fluorescent speckle microscopy (FSM) of MTs and f-actin in migrating newt lung epithelial cells. F-actin exhibited four zones of dynamic behavior: rapid retrograde flow in the lamellipodium, slow retrograde flow in the lamellum, anterograde flow in the cell body, and no movement in the convergence zone between the lamellum and cell body. Speckle analysis showed that MTs moved at the same trajectory and velocity as f-actin in the cell body and lamellum, but not in the lamellipodium or convergence zone. MTs grew along f-actin bundles, and quiescent MT ends moved in association with f-actin bundles. These results show that the movement and organization of f-actin has a profound effect on the dynamic organization of MTs in migrating cells, and suggest that MTs and f-actin bind to one another in vivo.


Asunto(s)
Actinas/metabolismo , Microscopía Fluorescente/métodos , Microtúbulos/ultraestructura , Animales , Movimiento Celular , Células Epiteliales/metabolismo , Procesamiento de Imagen Asistido por Computador , Pulmón/citología , Microscopía Confocal , Microscopía por Video , Salamandridae , Factores de Tiempo
11.
Mol Biol Cell ; 17(5): 2331-45, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16525027

RESUMEN

In interphase cells, the adenomatous polyposis coli (APC) protein accumulates on a small subset of microtubules (MTs) in cell protrusions, suggesting that APC may regulate the dynamics of these MTs. We comicroinjected a nonperturbing fluorescently labeled monoclonal antibody and labeled tubulin to simultaneously visualize dynamics of endogenous APC and MTs in living cells. MTs decorated with APC spent more time growing and had a decreased catastrophe frequency compared with non-APC-decorated MTs. Endogenous APC associated briefly with shortening MTs. To determine the relationship between APC and its binding partner EB1, we monitored EB1-green fluorescent protein and endogenous APC concomitantly in living cells. Only a small fraction of EB1 colocalized with APC at any one time. APC-deficient cells and EB1 small interfering RNA showed that EB1 and APC localized at MT ends independently. Depletion of EB1 did not change the growth-stabilizing effects of APC on MT plus ends. In addition, APC remained bound to MTs stabilized with low nocodazole, whereas EB1 did not. Thus, we demonstrate that the association of endogenous APC with MT ends correlates directly with their increased growth stability, that this can occur independently of its association with EB1, and that APC and EB1 can associate with MT plus ends by distinct mechanisms.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Extensiones de la Superficie Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/análisis , Proteína de la Poliposis Adenomatosa del Colon/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Extensiones de la Superficie Celular/química , Perros , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/química
12.
Mol Biol Cell ; 16(2): 964-75, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15601897

RESUMEN

Clathrin-mediated endocytosis in mammalian cells is critical for a variety of cellular processes including nutrient uptake and cell surface receptor down-regulation. Despite the findings that numerous endocytic accessory proteins directly or indirectly regulate actin dynamics and that actin assembly is spatially and temporally coordinated with endocytosis, direct functional evidence for a role of actin during clathrin-coated vesicle formation is lacking. Here, we take parallel biochemical and microscopic approaches to address the contribution of actin polymerization/depolymerization dynamics to clathrin-mediated endocytosis. When measured using live-cell fluorescence microscopy, disruption of the F-actin assembly and disassembly cycle with latrunculin A or jasplakinolide results in near complete cessation of all aspects of clathrin-coated structure (CCS) dynamics. Stage-specific biochemical assays and quantitative fluorescence and electron microscopic analyses establish that F-actin dynamics are required for multiple distinct stages of clathrin-coated vesicle formation, including coated pit formation, constriction, and internalization. In addition, F-actin dynamics are required for observed diverse CCS behaviors, including splitting of CCSs from larger CCSs, merging of CCSs, and lateral mobility on the cell surface. Our results demonstrate a key role for actin during clathrin-mediated endocytosis in mammalian cells.


Asunto(s)
Actinas/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Citoesqueleto/metabolismo , Endocitosis , Células 3T3 , Actinas/ultraestructura , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Clatrina/ultraestructura , Vesículas Cubiertas por Clatrina/ultraestructura , Citoesqueleto/ultraestructura , Depsipéptidos/farmacología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente , Modelos Biológicos , Tiazoles/farmacología , Tiazolidinas , Proteína Fluorescente Roja
13.
Curr Biol ; 14(2): 88-98, 2004 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-14738729

RESUMEN

BACKGROUND: Locomoting cells exhibit a constant retrograde flow of plasma membrane (PM) proteins from the leading edge lamellipodium backward, which when coupled to substrate adhesion, may drive forward cell movement. However, the intracellular source of these PM components and whether their continuous retrograde flow is required for cell motility is unknown. RESULTS: To test the hypothesis that the anterograde secretion pathway supplies PM components for retrograde flow that are required for lamellipodial activity and cell motility, we specifically inhibited transport of cargo from the trans-Golgi network (TGN) to the PM in Swiss 3T3 fibroblasts and monitored cell motility using time-lapse microscopy. TGN-to-PM trafficking was inhibited with a dominant-negative, kinase-dead (kd) mutant of protein kinase D1 (PKD) that specifically blocks budding of secretory vesicles from the TGN and does not affect other transport pathways. Inhibition of PKD on the TGN inhibited directed cell motility and retrograde flow of surface markers and filamentous actin, while inhibition of PKD elsewhere in the cell neither blocked anterograde membrane transport nor cell motile functions. Exogenous activation of Rac1 in PKD-kd-expressing cells restored lamellipodial dynamics independent of membrane traffic. However, lamellipodial activity was delocalized from a single leading edge, and directed cell motility was not fully recovered. CONCLUSIONS: These results indicate that PKD-mediated anterograde membrane traffic from the TGN to the PM is required for fibroblast locomotion and localized Rac1-dependent leading edge activity. We suggest that polarized secretion transmits cargo that directs localized signaling for persistent leading edge activity necessary for directional migration.


Asunto(s)
Movimiento Celular/fisiología , Fibroblastos/fisiología , Proteínas de la Membrana/fisiología , Proteína Quinasa C/fisiología , Animales , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/metabolismo , Ratones , Microinyecciones , Proteína Quinasa C/metabolismo , Seudópodos/fisiología , Transducción de Señal , Células 3T3 Swiss , Proteína de Unión al GTP rac1/fisiología , Red trans-Golgi/fisiología
14.
Curr Biol ; 12(18): R633-40, 2002 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-12372272

RESUMEN

Fluorescent Speckle Microscopy (FSM) is a technology for analyzing cytoskeleton dynamics, giving novel insight into their roles in living cells. New applications of FSM, together with the development of computer-based FSM image analysis, will make FSM the first microscopy-based method to deliver quantitative kinetic readouts at high spatial and temporal resolution for a wide variety of macromolecular systems. Here, we review the most recent applications and developments and give a glimpse of future directions and potentials of FSM.


Asunto(s)
Microscopía Fluorescente/métodos , Actinas/metabolismo , Animales , Biopolímeros/metabolismo , Citoesqueleto/metabolismo , Colorantes Fluorescentes , Humanos , Sustancias Macromoleculares , Microtúbulos/metabolismo , Mitosis , Neuronas/metabolismo
15.
Curr Biol ; 12(22): 1891-9, 2002 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-12445381

RESUMEN

BACKGROUND: In migrating cells, the retrograde flow of filamentous actin (f-actin) from the leading edge toward the cell body is accompanied by the synchronous motion of microtubules (MTs, ), whose plus ends undergo net growth. Thus, MTs must depolymerize elsewhere in the cell to maintain polymer mass over time. The source and location of depolymerized MTs is unknown. Here, we test the hypothesis that MT polymer loss occurs in central cell regions and is induced by the convergence of actin retrograde and anterograde flow, which buckles and breaks associated MTs and promotes minus-end depolymerization. RESULTS: We characterized the effects of calyculin A and ML-7 on the movement of f-actin and MTs by multi-spectral fluorescence recovery after photobleaching (FRAP) and fluorescent speckle microscopy (FSM). Our studies show that these drugs affect the rate of f-actin and MT convergence and MT buckling in a central cell region we call the "convergence zone." Increases in f-actin convergence are associated with faster MT turnover and an increase in both MT breakage and minus-end depolymerization, but they have no effect on MT plus end dynamic instability. CONCLUSIONS: We propose that f-actin movement into the convergence zone plays a major role in spatially modulating MT turnover during cell migration by regulating MT breakage, and thus minus-end dynamics, in central cell regions.


Asunto(s)
Actinas/metabolismo , Pulmón/fisiología , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Animales , Movimiento Celular/fisiología , Células Cultivadas , Procesamiento de Imagen Asistido por Computador , Pulmón/citología , Mucosa Respiratoria/fisiología , Mucosa Respiratoria/ultraestructura , Salamandridae
16.
Mol Biol Cell ; 15(1): 256-67, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14617821

RESUMEN

The GTPase dynamin controls a variety of endocytic pathways, participates in the formation of phagosomes, podosomal adhesions, and invadopodia, and in regulation of the cytoskeleton and apoptosis. Rac, a member of the Rho family of small GTPases, controls formation of lamellipodia and focal complexes, which are critical in cell migration and phagocytosis. We now show that disruption of dynamin(-2) function alters Rac localization and inhibits cell spreading and lamellipodia formation even though Rac is activated. Dominant-negative K44A dynamin(-2) inhibited cell spreading and lamellipodia formation on fibronectin without blocking cell adhesion; dynamin(-2) depletion by specific small interfering RNA inhibited lamellipodia in a similar manner. Dyn2(K44A) induced Rac mislocalization away from cell edges, into abnormal dorsal ruffles, and led to increased total Rac activity. Fluorescence resonance energy transfer imaging of Rac activity confirmed its predominant localization to aberrant dorsal ruffles in the presence of dominant-negative dyn2(K44A). Dyn2(K44A) induced the accumulation of tubulated structures bearing membrane-bound Rac-GFP. Constitutively active but not wild-type GFP-Rac was found on macropinosomes and Rac-dependent, platelet-derived growth factor-induced macropinocytosis was abolished by Dyn2(K44A) expression. These data suggest an indispensable role of dynamin in Rac trafficking to allow for lamellipodia formation and cell spreading.


Asunto(s)
Movimiento Celular/fisiología , Dinamina II/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Seudópodos/metabolismo , Animales , Adhesión Celular/fisiología , Células Cultivadas , Dinamina II/efectos de los fármacos , Dinamina II/fisiología , Fibronectinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ratones , Mutación , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt , ARN Interferente Pequeño/farmacología , Ratas , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología
17.
Methods Cell Biol ; 114: 179-210, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23931508

RESUMEN

This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Proteínas Mad2/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/instrumentación , Microscopía de Contraste de Fase/métodos , Microtúbulos/metabolismo , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/instrumentación , Xenopus
18.
Science ; 315(5808): 111-5, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17204653

RESUMEN

Cell migration requires the transmission of motion generated in the actin cytoskeleton to the extracellular environment through a complex assembly of proteins in focal adhesions. We developed correlational fluorescent speckle microscopy to measure the coupling of focal-adhesion proteins to actin filaments. Different classes of focal-adhesion structural and regulatory molecules exhibited varying degrees of correlated motions with actin filaments, indicating hierarchical transmission of actin motion through focal adhesions. Interactions between vinculin, talin, and actin filaments appear to constitute a slippage interface between the cytoskeleton and integrins, generating a molecular clutch that is regulated during the morphodynamic transitions of cell migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adhesiones Focales/metabolismo , Proteínas de Microfilamentos/metabolismo , Actinina/metabolismo , Animales , Línea Celular , Movimiento Celular , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrina alfaVbeta3/metabolismo , Microscopía Fluorescente , Método de Montecarlo , Paxillin/metabolismo , Potoroidae , Proteínas Recombinantes de Fusión/metabolismo , Talina/metabolismo , Vinculina/metabolismo
19.
J Cell Sci ; 120(Pt 19): 3475-87, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17855386

RESUMEN

Cell migration requires spatial and temporal regulation of filamentous actin (F-actin) dynamics. This regulation is achieved by distinct actin-associated proteins, which mediate polymerization, depolymerization, severing, contraction, bundling or engagement to the membrane. Mammalian Diaphanous-related (mDia) formins, which nucleate, processively elongate, and in some cases bundle actin filaments, have been extensively studied in vitro, but their function in the cell has been less well characterized. Here we study the role of mDia2 activity in the dynamic organization of F-actin in migrating epithelial cells. We find that mDia2 localizes in the lamella of migrating epithelial cells, where it is involved in the formation of a stable pool of cortical actin and in maintenance of polymerization-competent free filament barbed ends at focal adhesions. Specific inhibition of mDia2 alters focal adhesion turnover and reduces migration velocity. We suggest that the regulation of filament assembly dynamics at focal adhesions may be necessary for the formation of a stable pool of cortical lamella actin and the proper assembly and disassembly dynamics of focal adhesions, making mDia2 an important factor in epithelial cell migration.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Células Epiteliales , Adhesiones Focales/metabolismo , Animales , Proteínas Portadoras/genética , Forma de la Célula , Extensiones de la Superficie Celular/ultraestructura , Células Epiteliales/citología , Células Epiteliales/fisiología , Forminas , Humanos
20.
Cell ; 125(7): 1361-74, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16814721

RESUMEN

Cells exhibit a biphasic migration-velocity response to increasing adhesion strength, with fast migration occurring at intermediate extracellular matrix (ECM) concentration and slow migration occurring at low and high ECM concentration. A simple mechanical model has been proposed to explain this observation, in which too little adhesion does not provide sufficient traction whereas too much adhesion renders cells immobile. Here we characterize a phenotype for rapid cell migration, which in contrast to the previous model reveals a complex interdependence of subcellular systems that mediates optimal cell migration in response to increasing adhesion strength. The organization and activity of actin, myosin II, and focal adhesions (FAs) are spatially and temporally highly variable and do not exhibit a simple correlation with optimal motility rates. Furthermore, we can recapitulate rapid migration at a nonoptimal ECM concentration by manipulating myosin II activity. Thus, the interplay between actomyosin and FA dynamics results in a specific balance between adhesion and contraction, which induces maximal migration velocity.


Asunto(s)
Actomiosina/fisiología , Movimiento Celular/fisiología , Adhesiones Focales/fisiología , Actinas/fisiología , Animales , Fenómenos Biomecánicos , Línea Celular , Citoesqueleto/fisiología , Matriz Extracelular/fisiología , Retroalimentación , Modelos Biológicos , Miosina Tipo II/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA