RESUMEN
INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.
Asunto(s)
Lisina , Metabolómica , Niño , Femenino , Embarazo , Humanos , Preescolar , Índice de Masa Corporal , Reproducibilidad de los Resultados , Modelos LinealesRESUMEN
Although phthalate exposure has been linked with multiple adverse pregnancy outcomes, their underlying biological mechanisms are not fully understood. We examined associations between biomarkers of phthalate exposures and metabolic alterations using untargeted metabolomics in 99 pregnant women and 86 newborns [mean (SD) gestational age = 39.5 (1.5) weeks] in the PROTECT cohort. Maternal urinary phthalate metabolites were quantified using isotope dilution high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), while metabolic profiles in maternal and cord blood plasma were characterized via reversed-phase LC-MS. Multivariable linear regression was used in metabolome-wide association studies (MWAS) to identify individual metabolic features associated with elevated phthalate levels, while clustering and correlation network analyses were used to discern the interconnectedness of biologically relevant features. In the MWAS adjusted for maternal age and prepregnancy BMI, we observed significant associations between specific phthalates, namely, di(2-ethylhexyl) phthalate (DEHP) and mono(3-carboxypropyl) phthalate (MCPP), and 34 maternal plasma metabolic features. These associations predominantly included upregulation of fatty acids, amino acids, purines, or their derivatives and downregulation of ceramides and sphingomyelins. In contrast, fewer significant associations were observed with metabolic features in cord blood. Correlation network analysis highlighted the overlap of features associated with phthalates and those identified as differentiating markers for preterm birth in a previous study. Overall, our findings underscore the complex impact of phthalate exposures on maternal and fetal metabolism, highlighting metabolomics as a tool for understanding associated biological processes. Future research should focus on expanding the sample size, exploring the effects of phthalate mixtures, and validating identified metabolic features in larger, more diverse populations.
Asunto(s)
Metabolómica , Ácidos Ftálicos , Humanos , Femenino , Ácidos Ftálicos/orina , Embarazo , Adulto , Puerto Rico , Exposición Materna , Recién Nacido , Sangre Fetal/química , Sangre Fetal/metabolismo , Biomarcadores/sangre , Metaboloma , Exposición a Riesgos AmbientalesRESUMEN
Prenatal per- and poly-fluoroalkyl substances (PFAS) exposure may influence gestational outcomes through bioactive lipidsâmetabolic and inflammation pathway indicators. We estimated associations between prenatal PFAS exposure and bioactive lipids, measuring 12 serum PFAS and 50 plasma bioactive lipids in 414 pregnant women (median 17.4 weeks' gestation) from three Environmental influences on Child Health Outcomes Program cohorts. Pairwise association estimates across cohorts were obtained through linear mixed models and meta-analysis, adjusting the former for false discovery rates. Associations between the PFAS mixture and bioactive lipids were estimated using quantile g-computation. Pairwise analyses revealed bioactive lipid levels associated with PFDeA, PFNA, PFOA, and PFUdA (p < 0.05) across three enzymatic pathways (cyclooxygenase, cytochrome p450, lipoxygenase) in at least one combined cohort analysis, and PFOA and PFUdA (q < 0.2) in one linear mixed model. The strongest signature revealed doubling in PFOA corresponding with PGD2 (cyclooxygenase pathway; +24.3%, 95% CI: 7.3-43.9%) in the combined cohort. Mixture analysis revealed nine positive associations across all pathways with the PFAS mixture, the strongest signature indicating a quartile increase in the PFAS mixture associated with PGD2 (+34%, 95% CI: 8-66%), primarily driven by PFOS. Bioactive lipids emerged as prenatal PFAS exposure biomarkers, deepening insights into PFAS' influence on pregnancy outcomes.
Asunto(s)
Fluorocarburos , Lípidos , Humanos , Femenino , Embarazo , Lípidos/sangre , Fluorocarburos/sangre , Salud Infantil , Estudios de Cohortes , Estudios Transversales , Adulto , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales , Exposición Materna , NiñoRESUMEN
BACKGROUND: Organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that can negatively impact metabolic health through pathways including endocrine disruption. Few studies have evaluated diabetes risk associated with PBDEs. Little is known about the joint effect of exposure to POP mixtures on diabetes risk. OBJECTIVES: We investigated the relationship between POPs, individually and as mixtures, and diabetes development over 18 years (1999-2016) in midlife women. METHODS: We measured lipid-standardized serum concentrations of 34 PCBs, 19 OCPs, and 14 PBDEs in 1040 midlife women aged 45-56 years from the Study of Women's Health Across the Nation. We tested the association between POPs measured in 1999/2000 and incident diabetes using Cox proportional hazards models. We evaluated diabetes risk associated with the overall POP mixture using Quantile-Based G-Computation (QBGC). RESULTS: For most mixture components, single pollutant and mixtures analyses indicated null associations with diabetes risk, however results were inconsistent. After adjustment, hazard ratios (HRs) of developing diabetes (95% CI) associated with upper exposure tertiles (T2/T3) compared with the first tertile (T1), were 1.7 (1.0, 2.8) at T2 and 1.5 (0.84, 2.7) at T3 for hexachlorobenzene and 1.9 (1.1, 3.3) at T2 and 1.6 (0.88, 2.9) at T3 for PCB 123. A doubling of PBDE 47 was associated with 1.11 (1.00, 1.24) times the risk of T2D. QBGC identified no association for the overall joint effect of the POP mixture on diabetes (HR = 1.04 [0.53, 2.07]). CONCLUSION: Exposure to a mixture of PCBs, OCPs, and PBDEs was not associated with incident diabetes in midlife U.S. women, although some individual POPs demonstrated significant yet inconsistent associations with diabetes. Non-linear and non-monotonic dose-response dynamics deserve further exploration. More research is needed on the diabetogenic effects of PBDEs.
Asunto(s)
Diabetes Mellitus , Éteres Difenilos Halogenados , Hidrocarburos Clorados , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados , Humanos , Femenino , Persona de Mediana Edad , Éteres Difenilos Halogenados/sangre , Contaminantes Orgánicos Persistentes/sangre , Hidrocarburos Clorados/sangre , Diabetes Mellitus/epidemiología , Diabetes Mellitus/sangre , Diabetes Mellitus/inducido químicamente , Bifenilos Policlorados/sangre , Exposición a Riesgos Ambientales/efectos adversos , Estados Unidos/epidemiología , Salud de la Mujer , Incidencia , Plaguicidas/sangre , Contaminantes Ambientales/sangreRESUMEN
INTRODUCTION: N-(phosphonomethyl)glycine, or glyphosate, is a non-selective systemic herbicide widely used in agricultural, industrial, and residential settings since 1974. Glyphosate exposure has been inconsistently linked to neurotoxicity in animals, and studies of effects of gestational exposure among humans are scarce. In this study we investigated relationships between prenatal urinary glyphosate analytes and early childhood neurodevelopment. METHODS: Mother-child pairs from the PROTECT-CRECE birth cohort in Puerto Rico with measures for both maternal urinary glyphosate analytes and child neurodevelopment were included for analysis (n = 143). Spot urine samples were collected 1-3 times throughout pregnancy and analyzed for glyphosate and aminomethylphosphonic acid (AMPA), an environmental degradant of glyphosate. Child neurodevelopment was assessed at 6, 12, and 24 months using the Battelle Developmental Inventory, 2nd edition Spanish (BDI-2), which provides scores for adaptive, personal-social, communication, motor, and cognitive domains. We used multivariable linear regression to examine associations between the geometric mean of maternal urinary glyphosate analytes across pregnancy and BDI-2 scores at each follow-up. Results were expressed as percent change in BDI-2 score per interquartile range increase in exposure. RESULTS: Prenatal AMPA concentrations were negatively associated with communication domain at 12 months (%change = -5.32; 95%CI: 9.04, -1.61; p = 0.007), and communication subdomain scores at 12 and 24 months. At 24 months, four BDI-2 domains were associated with AMPA: adaptive (%change = -3.15; 95%CI: 6.05, -0.25; p = 0.038), personal-social (%change = -4.37; 95%CI: 7.48, -1.26; p = 0.008), communication (%change = -7.00; 95%CI: 11.75, -2.26; p = 0.005), and cognitive (%change = -4.02; 95%CI: 6.72, -1.32; p = 0.005). Similar trends were observed with GLY concentrations, but most confidence intervals include zero. We found no significant associations at 6 months. CONCLUSIONS: Our results suggest that gestational exposure to glyphosate is associated with adverse early neurodevelopment, with more pronounced delays at 24 months. Given glyphosate's wide usage, further investigation into the impact of gestational glyphosate exposure on neurodevelopment is warranted.
Asunto(s)
Cohorte de Nacimiento , Glifosato , Embarazo , Femenino , Humanos , Preescolar , Puerto Rico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Glicina/toxicidad , Glicina/orinaRESUMEN
Phthalates have endocrine activity that may interfere with bone health, particularly during pregnancy and the early postpartum period, when bone resorption increases. We evaluated associations between prenatal phthalate exposure and perinatal bone health among 289 mothers in the ELEMENT birth cohort in Mexico City who were randomized upon recruitment to receive 1,200 mg daily calcium supplementation or placebo throughout pregnancy. Spot urine samples at up to three timepoints during pregnancy were assayed for 9 phthalate metabolites. Bone integrity was assessed by quantitative ultrasound speed of sound (SOS) measurements of the phalange and distal radius at 3, 6, and 8 months of pregnancy and 1, 3, 7, and 12 months postpartum. Geometric means of specific gravity-corrected phthalate concentrations were used as overall measures of prenatal exposure. Linear mixed effect models estimated associations between phthalate exposure and repeated perinatal bone SOS measures, adjusting for age, pre-pregnancy body mass index (BMI), education, parity, calcium supplementation, and month of pregnancy/postpartum. Effect modification by calcium supplementation and BMI were assessed in sensitivity analyses. An interquartile range increase in MEP and MiBP increased pregnancy phalange z-scores (ß: 0.11; 95%CI: 0.003, 0.31 and ß: 0.15; 95%CI: 0.00,0.42, respectively). Higher concentrations of several phthalate metabolites resulted in lower SOS measures among women who received calcium supplements (compared to placebo group) but higher SOS measures among women with a BMI≥25 (compared to BMI<25). These results suggest that phthalate exposure may interfere with bone remodeling during pregnancy, and that consideration of effect modifiers is paramount to fully understand the effects of environmental exposures on bone health.
Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Femenino , Embarazo , Mujeres Embarazadas , Índice de Masa Corporal , Calcio , Ácidos Ftálicos/orina , Exposición a Riesgos Ambientales , Paridad , Suplementos Dietéticos , Contaminantes Ambientales/toxicidadRESUMEN
Prenatal chemical exposures can influence maternal and child health; however, few industrial chemicals are routinely biomonitored. We assessed an extensive panel of contemporary and emerging chemicals in 171 pregnant women across the United States (U.S.) and Puerto Rico in the Environmental influences on Child Health Outcomes (ECHO) Program. We simultaneously measured urinary concentrations of 89 analytes (103 total chemicals representing 73 parent compounds) in nine chemical groups: bactericides, benzophenones, bisphenols, fungicides and herbicides, insecticides, organophosphate esters (OPEs), parabens, phthalates/alternative plasticizers, and polycyclic aromatic hydrocarbons (PAHs). We estimated associations of creatinine-adjusted concentrations with sociodemographic and specimen characteristics. Among our diverse prenatal population (60% non-Hispanic Black or Hispanic), we detected 73 of 89 analytes in ≥1 participant and 36 in >50% of participants. Five analytes not currently included in the U.S. biomonitoring were detected in ≥90% of samples: benzophenone-1, thiamethoxam, mono-2-(propyl-6-carboxy-hexyl) phthalate, monocarboxy isooctyl phthalate, and monohydroxy-iso-decyl phthalate. Many analyte concentrations were higher among women of Hispanic ethnicity compared to those of non-Hispanic White women. Concentrations of certain chemicals decreased with the calendar year, whereas concentrations of their replacements increased. Our largest study to date identified widespread exposures to prevalent and understudied chemicals in a diverse sample of pregnant women in the U.S.
Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Niño , Comercio , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Evaluación de Resultado en la Atención de Salud , Plastificantes , Embarazo , Mujeres Embarazadas , Estados UnidosRESUMEN
BACKGROUND/AIM: Matrix metalloproteinases (MMPs) are important regulators of uterine remodeling, a critical process for healthy pregnancies, and studies have revealed a link between an imbalance in MMPs and adverse birth outcomes. Toxicological studies have indicated that exposure to heavy metals can alter the levels of inflammatory cytokines, including MMPs. Despite growing evidence, the clear association between heavy metal exposure and MMPs has yet to be explored extensively in human populations. To have a better understanding of the association, in this study, we assessed associations between maternal blood metal levels with MMPs among 617 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS: We measured blood concentrations for 11 metals in the first and/or second trimester of pregnancy using ICP-MS. MMPs (MMP1, MMP2, and MMP9) were quantified using a customized Luminex assay. Linear mixed effects models (LMEs) were used to regress MMPs on metals and included random intercepts for study participants to account for correlated repeated outcome measures. Fetal sex effects were estimated using interaction terms between metal exposure variables and fetal sex indicators. RESULTS: We observed significant associations between cesium, manganese, and zinc with all the MMPs that were measured. We also observed differences in metal-MMPs associations by fetal sex. Cobalt was positively associated with MMP1 only in women with male fetuses, and cesium was negatively associated with MMP1 only in women with female fetuses. MMP2 had significant associations with maternal blood metal concentrations only in women with female fetuses. CONCLUSION: Certain metals were significantly associated with MMPs that are responsible for uterine remodeling and healthy pregnancies. Most of these associations differed by fetal sex. This study highlighted significant metal-MMPs associations that may inform research on new avenues for understanding heavy metal-induced adverse birth outcomes and the development of diagnostic tools.
Asunto(s)
Metales Pesados , Femenino , Humanos , Masculino , Exposición Materna/efectos adversos , Metaloproteinasas de la Matriz/sangre , Metales Pesados/toxicidad , Embarazo/sangre , Puerto RicoRESUMEN
STUDY OBJECTIVES: The neurobiological processes involved in establishing sleep regulation are vulnerable to environmental exposures as early as seven weeks of gestation. Studies have linked in utero pesticide exposure to childhood sleep-disordered breathing. However, the impact of in utero pesticide exposure on the sleep health of adolescents remains unexplored. MATERIALS AND METHODS: Data from 137 mother-adolescent pairs from a Mexico City cohort were analyzed. We used maternal urinary 3-phenoxybenzoic acid (3-PBA, pyrethroid metabolite) and 3, 5, 6-trichloro-2-pyridinol (TCPy, chlorpyrifos metabolite) from trimester three to estimate in utero pesticide exposure. Among adolescents, we obtained repeated measures of objectively assessed sleep duration, midpoint, and fragmentation using wrist-actigraphy devices for 7 consecutive days in 2015 and 2017. Unstratified and sex-stratified associations between maternal urinary 3-PBA and TCPy and adolescent sleep measures were examined using generalized linear mixed models (GLMMs). We also examined the interactive effects of maternal pesticide exposure and offspring sex on sleep outcomes. RESULTS: 3-PBA and TCPy were detected in 44.4% and 93% of urine samples, respectively. Adjusted findings demonstrated that higher exposure to maternal TCPy was associated with longer sleep duration and later sleep timing. Findings from interaction tests between maternal pesticide exposure and offspring sex were not statistically significant, although adjusted sex-stratified findings showed that the association between TCPy with duration and midpoint was evident only among female offspring. To illustrate, those in the highest tertile of exposure had a 59 minute (95% CI: 12.2, 104.8) (p, trend = 0.004) longer sleep duration and a 0.6 hour (95% CI: 0.01, 1.3) (p, trend = 0.01) later sleep midpoint. We found no significant associations between 3-PBA and sleep outcomes. CONCLUSION: Within a cohort of mother-adolescent pairs, we found associations between maternal prenatal pesticide exposure and longer sleep duration and later sleep timing among adolescent offspring. Further, this association may be female-specific.
Asunto(s)
Cloropirifos , Plaguicidas , Piretrinas , Adolescente , Niño , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Exposición Materna/efectos adversos , Plaguicidas/toxicidad , Embarazo , SueñoRESUMEN
Personal care products (PCPs) refer to a wide variety of items commonly characterized as health or beauty products. PCPs contain a number of ingredients, often including a wide range of endocrine disrupting chemicals such as phthalates and parabens. The present study examines the association between self-reported PCP use and prenatal sex-steroids and thyroid hormones levels in women from Puerto Rico. We recruited pregnant women (n = 1070) through the Puerto Rico PROTECT Cohort and collected blood, demographic and pregnancy-related data at recruitment and subsequent visits. PCP use in the 48-h preceding the blood sample was collected through self-reported questionnaires. Nine hormones (corticotropin-releasing hormone [CRH], sex-hormone binding globulin [SHBG], estriol [E3], progesterone, testosterone, thyroid-stimulating hormone [TSH], total triiodothyronine [T3], total thyroxine [T4], and free thyroxine [fT4]) were measured in maternal serum samples at two points during pregnancy. Linear mixed models with random intercepts were used to examine associations between PCP use and serum hormone levels. Use of cosmetics significantly increased with age, household income and education level (p < 0.01). Use of hair products, such as hair dyes and bleach, relaxers, and mousse, was associated with lower levels of all sex steroid hormones compared to non-use: SHBG (%Δ = -7.1, 95%CI: -12.4,-1.8), E3 (%Δ = -23.2, 95%CI: -32.2,-13.0), progesterone (%Δ = -21.5, 95%CI: -29.4,-12.9) and testosterone (%Δ = -21.5, 95%CI: -33.1,-7.8) adjusted for maternal age, education and pre-pregnancy body mass index. Our findings suggest that household income and education level influence PCP use among pregnant women in this study. Use of certain hair products was associated with lower concentrations of sex steroid hormones. Although there are limitations to questionnaire data, characterizing PCP use is inexpensive and may represent exposure from multiple classes of chemicals, including chemicals that may not specifically appear on product labels and/or have not been tested for endocrine disrupting potential, making it a useful complement to chemical biomarker data.
Asunto(s)
Cosméticos , Mujeres Embarazadas , Demografía , Femenino , Hormonas , Humanos , Exposición Materna , Embarazo , Puerto RicoRESUMEN
BACKGROUND: Glyphosate is a widely used herbicide in global agriculture. Glyphosate and its primary environmental degradate, aminomethyl phosphonic acid (AMPA), have been shown to disrupt endocrine function and induce oxidative stress in in vitro and animal studies. To our knowledge, these relationships have not been previously characterized in epidemiological settings. Elevated urinary levels of glyphosate and AMPA may be indicative of health effects caused by previous exposure via multiple mechanisms including oxidative stress. METHODS: Glyphosate and AMPA were measured in 347 urine samples collected between 16 and 20 weeks gestation and 24-28 weeks gestation from pregnant women in the PROTECT birth cohort. Urinary biomarkers of oxidative stress, comprising 8-isoprostane-prostaglandin-F2α (8-iso-PGF2α), its metabolite 2,3-dinor-5,6-dihydro-15-F2 t-isoprostane (8-isoprostane metabolite) and prostaglandin-F2α (PGF2α), were also measured. Linear mixed effect models assessed the association between exposures and oxidative stress adjusting for maternal age, smoking status, alcohol consumption, household income and specific gravity. Potential nonlinear trends were also assessed using tertiles of glyphosate and AMPA exposure levels. RESULTS: No significant differences in exposure or oxidative stress biomarker concentrations were observed between study visits. An interquartile range (IQR) increase in AMPA was associated with 9.5% (95% CI: 0.5-19.3%) higher 8-iso-PGF2α metabolite concentrations. Significant linear trends were also identified when examining tertiles of exposure variables. Compared to the lowest exposure group, the second and third tertiles of AMPA were significantly associated with 12.8% (0.6-26.5%) and 15.2% (1.8-30.3%) higher 8-isoprostane metabolite, respectively. An IQR increase in glyphosate was suggestively associated with 4.7% (-0.9 to 10.7%) higher 8-iso-PGF2α. CONCLUSIONS: Urinary concentrations of the main environmental degradate of glyphosate, AMPA, were associated with higher levels of certain oxidative stress biomarkers. Associations with glyphosate reflected similar trends, although findings were not as strong. Additional research is required to better characterize the association between glyphosate exposure and biomarkers of oxidative stress, as well as potential downstream health consequences.
Asunto(s)
Cohorte de Nacimiento , Mujeres Embarazadas , Animales , Biomarcadores/metabolismo , Estudios de Cohortes , Femenino , Glicina/análogos & derivados , Humanos , Estrés Oxidativo , Ácidos Fosforosos , Embarazo , GlifosatoRESUMEN
BACKGROUND: Studies on the health effects of metal mixtures typically utilize biomarkers measured in a single biological medium, such as blood or urine. However, the ability to evaluate mixture effects are limited by the uncertainty whether a unified medium can fully capture exposure for each metal. Therefore, it is important to compare and assess metal mixtures measured in different media in epidemiology studies. OBJECTIVES: The aim of this study was to examine the mixture predictive performance of urine and blood metal biomarkers and integrated multi-media biomarkers in association with birth outcomes. METHODS: In our analysis of 847 women from the Puerto Rico PROTECT Cohort, we measured 10 essential and non-essential metals in repeated and paired samples of urine and blood during pregnancy. For each metal, we integrated exposure estimates from paired urine and blood biomarkers into multi-media biomarkers (MMBs), using intraclass-correlation coefficient (ICC) and weighted quantile sum (WQS) approaches. Using Ridge regressions, four separate Environmental risk scores (ERSs) for metals in urine, blood, MMBICC, and MMBWQS were computed as a weighted sum of the 10 metal concentrations. We then examined associations between urine, blood, and multi-media biomarker ERSs and birth outcomes using linear and logistic regressions, adjusting for maternal age, maternal education, pre-pregnancy body mass index (BMI), and second-hand smoke exposure. The performance of each ERS was evaluated with continuous and tertile estimates and 95% confidence intervals of the odds ratio of preterm birth using area under the curve (AUC). RESULTS: Pb was the most important contributor of blood ERS as well as the two integrated multi-media biomarker ERSs. Individuals with high ERS (3rd tertile) showed increased odds of preterm birth compared to individuals with low ERS (1st tertile), with 2.8-fold (95% CI, 1.49 to 5.40) for urine (specific gravity corrected); 3.2- fold (95% CI, 1.68 to 6.25) for blood; 3.9-fold (95% CI, 1.72 to 8.66) for multi-media biomarkers composed using ICC; and 5.2-fold (95% CI, 2.34 to 11.42) for multi-media biomarkers composed using WQS. The four ERSs had comparable predictive performances (AUC ranging from 0.64 to 0.68) when urine is examined with specific gravity corrected concentrations. CONCLUSIONS: Within a practical metal panel, measuring metals in either urine or blood may be an equally good approach to evaluate the metals as a mixture. Applications in practical study design require validation of these methods with other cohorts, larger panels of metals and within the context of other adverse health effects of interest.
Asunto(s)
Nacimiento Prematuro , Biomarcadores , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Metales , Embarazo , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/epidemiología , Puerto RicoRESUMEN
The prevalence of Attention Deficit/Hyperactivity Disorder (ADHD) has been increasing. Research suggests that exposure to endocrine disrupting chemicals such as phthalates may play a role, but studies of in utero phthalate exposure and ADHD-related symptoms beyond early childhood are limited. We investigated associations between measures of in utero phthalate exposure and ADHD symptoms, such as inattention and impulsivity, in childhood (age 6-11 years, n = 221) and in adolescence (age 9-18 years, n = 200), as well as cross-sectional relationships between phthalate exposure and ADHD symptoms in adolescence (n = 491) among participants in the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohort. Women provided urine samples up to three times during pregnancy and adolescents provided a urine sample at 9-18 years of age for phthalate metabolite measurement. We administered the Conners' Continuous Performance Test (CPT) when children were age 6-11 years and again at 9-18 years of age. We used multivariable linear regression to examine associations between the geometric mean of phthalate metabolite levels across pregnancy and CPT scores in childhood or adolescence separately, adjusting for age, years schooling (at 9-18 only), maternal education, and specific gravity. Although average in utero phthalate concentrations were not associated with CPT scores in childhood, interquartile range (IQR) increases of in utero MBzP, MCPP, and MBP were associated with 4.2%, 4.7%, and 4.5% (p < 0.05) higher Omissions scores in adolescence, respectively, indicating higher inattention. In utero MiBP levels were also associated with higher Inter-Stimulus Interval (ISI) and Variability scores (5.4% and 5.5% per IQR, p < 0.05) in adolescence. In addition, urinary DEHP metabolite levels during adolescence were cross-sectionally associated with poorer scores on several CPT indices indicating greater inattention. These findings suggest that in utero phthalate exposure may have adverse effects on attention, but these effects may not appear until adolescence, a period of extensive neurodevelopment. Future research investigating the long-term effects of in utero phthalate exposure on attention and ADHD in adolescence, as well as identification of potential mechanisms involved, is needed.
Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Ácidos Ftálicos , Adolescente , Niño , Preescolar , Estudios Transversales , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/toxicidad , Femenino , Humanos , México , Ácidos Ftálicos/toxicidad , EmbarazoRESUMEN
BACKGROUND: Data suggest that pesticides interact with the melatonin receptor, which may influence sleep. However, the link between pesticides and sleep remains unexplored among the general adult population. This study evaluated unstratified and sex-stratified associations between urinary pesticide exposure (N = 4,478) and self-reported acute household pesticide exposure (N = 14,956), with sleep health outcomes within a nationally representative sample of US adults. METHODS: Data from the National Health and Nutrition Examination Surveys (NHANES) 2009-2014 were combined for analysis of aim 1 and aim 2. Urinary pesticide metabolite concentrations served as biomarkers of pesticide exposure. Acute household pesticide exposure (if any chemical products were used in the home in the past seven days to control pests) was self-reported (yes/no). Insufficient sleep duration (< 7 h/night) and trouble sleeping (yes/no) were self-reported. Log-binomial regression models that accounted for complex survey weights and adjusted for confounders were used to compute prevalence ratios and 95% CI. RESULTS: Log urinary 3-phenoxybenzoic acid (3-PBA) was related to a higher probability of insufficient sleep [1.09 (95% CI: 1.00, 1.20), p = 0.04] and trouble sleeping [1.14 (95% CI: 1.02, 1.27), p = 0.02] among males. Self-reported acute household pesticide exposure was associated with a higher probability of insufficient sleep duration [1.16 (95% CI: 1.02, 1.32), p = 0.03] and trouble sleeping [1.20 (95% CI: 1.01, 1.44), p = 0.04] in the unstratified sample. Sex-stratified findings showed that associations between acute household pesticide exposure and trouble sleeping only persisted among males [1.69 (95% CI: 1.27, 2.24), p < .001]. CONCLUSIONS: In summary, acute pesticide exposure may be detrimental to adult sleep health, particularly among US males.
Asunto(s)
Plaguicidas , Trastornos del Sueño-Vigilia , Adulto , Humanos , Masculino , Encuestas Nutricionales , Plaguicidas/toxicidad , Autoinforme , SueñoRESUMEN
Given the potential adverse health effects related to toxic trace metal exposure and insufficient or excessive levels of essential trace metals in pregnant women and their fetuses, the present study characterizes biomarkers of metal and metalloid exposure at repeated time points during pregnancy among women in Puerto Rico. We recruited 1040 pregnant women from prenatal clinics and collected urine, blood, and questionnaire data on demographics, product use, food consumption, and water usage at up to three visits. All samples were analyzed for 16 metal(loid)s: arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), titanium (Ti), uranium (U), vanadium (V), and zinc (Zn). Urine samples were additionally analyzed for molybdenum (Mo), platinum (Pt), antimony (Sb), tin (Sn), and tungsten (W). Mean concentrations of most metal(loid)s were higher among participants compared to the general US female population. We found weak to moderate correlations for inter-matrix comparisons, and moderate to strong correlations between several metal(loid)s measured within each biological matrix. Blood concentrations of Cu, Zn, Mn, Hg, and Pb were shown to reflect reliable biomarkers of exposure. For other metals, repeated samples are recommended for exposure assessment in epidemiology studies. Predictors of metal(loid) biomarkers included fish and rice consumption (urinary As), fish and canned food (blood Hg), drinking public water (blood Pb), smoking (blood Cd), and iron/folic acid supplement use (urinary Cs, Mo, and Sb). Characterization of metal(loid) biomarker variation over time and between matrices, and identification of important exposure sources, may inform future epidemiology studies and exposure reduction strategies.
Asunto(s)
Arsénico , Metales Pesados , Oligoelementos , Animales , Cromo , Femenino , Humanos , Exposición Materna , Metales , Metales Pesados/orina , Embarazo , Puerto Rico , Oligoelementos/orinaRESUMEN
The Environmental influences on Child Health Outcomes (ECHO) Program is a research initiative funded by the National Institutes of Health that capitalizes on existing cohort studies to investigate the impact of early life environmental factors on child health and development from infancy through adolescence. In the initial stage of the program, extant data from 70 existing cohort studies are being uploaded to a database that will be publicly available to researchers. This new database will represent an unprecedented opportunity for researchers to combine data across existing cohorts to address associations between prenatal chemical exposures and child neurodevelopment. Data elements collected by ECHO cohorts were determined via a series of surveys administered by the ECHO Data Analysis Center. The most common chemical classes quantified in multiple cohorts include organophosphate pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, environmental phenols (including bisphenol A), phthalates, and metals. For each of these chemicals, at least four ECHO cohorts also collected behavioral data during infancy/early childhood using the Child Behavior Checklist. For these chemicals and this neurodevelopmental assessment (as an example), existing data from multiple ECHO cohorts could be pooled to address research questions requiring larger sample sizes than previously available. In addition to summarizing the data that will be available, the article also describes some of the challenges inherent in combining existing data across cohorts, as well as the gaps that could be filled by the additional data collection in the ECHO Program going forward.
Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Adolescente , Niño , Salud Infantil , Preescolar , Estudios de Cohortes , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Femenino , Éteres Difenilos Halogenados , Humanos , Compuestos Organofosforados , EmbarazoRESUMEN
BACKGROUND: Endocrine disrupting chemicals (EDCs) such as metals have been reported to alter circulating reproductive hormone concentrations and pubertal development in animals. However, the relationship has rarely been investigated among humans, with the exception of heavy metals, such as Pb and Cd. Our aim was to investigate measures of in utero and peripubertal metal exposure in relation to reproductive hormone concentrations and sexual maturation and progression among boys from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohorts. METHODS: Our analysis included 118 pregnant women and their male children from the ELEMENT study. Essential and non-essential metals were measured in urine collected from the mothers during the third trimester of pregnancy and their male children at 8-14 years. Reproductive hormone concentrations [serum testosterone, estradiol, dehydroepiandrosterone sulfate (DHEA-S), inhibin B, and sex hormone-binding globulin (SHBG)] were measured in blood samples from the children at 8-14 years. We also assessed Tanner stages for sexual maturation (genital, pubic hair development, and testicular volume), at two time points (8-14, 10-18 years). We used linear regression to independently examine urinary metal concentrations in relation to each peripubertal reproductive hormones adjusting for child age and BMI. Generalized estimation equations (GEEs) were used to evaluate the association of in utero and peripubertal metal exposures with sexual maturation and progression during follow-up based on Tanner staging and testicular volume. RESULTS: In utero and prepubertal concentrations of some urinary metals were associated with increased concentrations of peripubertal reproductive hormones, especially non-essential metal(loid)s As and Cd (in utero), and Ba (peripubertal) as well as essential metal Mo (in utero) in association with testosterone. More advanced pubic hair developmental stage and higher testicular volume at the early teen visit was observed for boys with higher non-essential metal concentrations, including in utero Al and peripubertal Ba, and essential metal Zn concentration (peripubertal). These metals were also associated with slower pubertal progression between the two visits. CONCLUSION: These findings suggest that male reproductive development may be associated with both essential and non-essential metal exposure during in utero and peripubertal windows.
Asunto(s)
Arsénico/orina , Contaminantes Ambientales/orina , Exposición Materna , Metales/orina , Efectos Tardíos de la Exposición Prenatal , Maduración Sexual , Adolescente , Adulto , Niño , Ciudades , Sulfato de Deshidroepiandrosterona/sangre , Estradiol/sangre , Femenino , Humanos , Inhibinas/sangre , Masculino , Intercambio Materno-Fetal , México , Embarazo , Globulina de Unión a Hormona Sexual/análisis , Testosterona/sangre , Adulto JovenRESUMEN
Prior to Hurricane Maria, Puerto Rico already had 200+ hazardous waste sites, significant contamination of water resources, and among the highest rates of preterm birth in the US. To address these issues, the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) Center was formed in 2010 to investigate prenatal environmental exposures, particularly phthalates, and adverse birth outcomes. Recent work from the PROTECT study confirms that in utero exposure to certain phthalates is associated with shorter gestation and increased risk of preterm birth. However, previous research also suggests that pregnant women who experience a natural disaster such as Hurricane Maria are at higher risk of adverse birth outcomes, but it is unknown whether this is due to stress, hazardous exposures, or a combination of factors. Thus, the aim of this analysis was to characterize hurricane-related changes in phthalate exposures and experiences within the PROTECT cohort. Among 176 participants who were pregnant during or within 5 months after Maria, 122 completed a questionnaire on hurricane-related experiences. Questionnaire results and biomarkers of exposure suggest that participants did not have regular access to fresh foods and water during hurricane recovery, and almost half reported structural damage to their home. In addition, biomarker concentrations of phthalates commonly used in food packaging were higher among participants post-hurricane, while phthalates commonly used in personal care products were lower compared to pre-hurricane levels. Hurricane-related increases in phthalate exposure, as well as widespread structural damage, food and water shortages, and long-term absence of electricity and cell phone service, likely increased the risk of adverse birth outcomes among this already vulnerable population.
RESUMEN
BACKGROUND: Phthalates are known endocrine disruptors and peroxisome proliferator-activated receptor (PPAR) activators, potentially capable of promoting an obesogenic effect. Pregnant women are especially vulnerable to phthalate exposure due to physiological and metabolic changes during pregnancy, including those related to the metabolism of xenobiotics. Phthalate exposure during pregnancy has been associated with early gestational weight gain, however, its effect on long-term weight gain remains unclear. The aim of the present study was to evaluate the association between phthalate exposure during pregnancy and long-term changes in weight among women. METHODS: Urinary phthalate concentrations, socioeconomic, anthropometry and information on diet and socioeconomic status were collected during pregnancy from 178 women from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort. Maternal body weight and diet information was also collected up to 5 times in the first year postpartum and twice during follow-up visits 5.2-10.7 years later. A path analysis was performed to assess associations between urinary phthalate metabolite levels during pregnancy and change in weight (kg) per year after delivery, including age, education, living with/without partner, parity, daily energy intake and breastfeeding duration. RESULTS: The mean age at pregnancy was 27.3⯱â¯5.9 years and mean body mass index during the first postpartum year was 27.07⯱â¯4.22â¯kg/m2. On average, women gained 3.48â¯kg (0.52⯱â¯0.84â¯kg/year). A unit increase in log-transformed mono-3-carboxypropyl phthalate (MCPP) was associated with 0.33â¯kg (95% CI: 0.09, 0.56) higher weight gain per year, and mono-benzyl phthalate (MBzP) with 0.21â¯kg (95% CI: -0.38, -0.03) lower weight gain per year. CONCLUSION: Exposure to certain phthalates during pregnancy may be associated with long-term weight change in women. More studies on the effects of phthalate exposure during pregnancy on women's long-term health are required.
Asunto(s)
Contaminantes Ambientales , Exposición Materna/estadística & datos numéricos , Ácidos Ftálicos , Aumento de Peso , Mujeres , Adulto , Índice de Masa Corporal , Niño , Exposición a Riesgos Ambientales , Femenino , Humanos , México , Embarazo , Adulto JovenRESUMEN
There is increasing evidence that several metals are endocrine disrupting chemicals (EDCs). In utero development and adolescence are critical windows of susceptibility to EDC exposure. With the exception of a few heavy metals, few human studies have evaluated the impact of metal exposure on pubertal development. Our aim was to investigate measures of in utero and peripubertal metal exposure in relation to reproductive hormone levels and sexual maturation and progression among girls from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohorts. We measured urinary concentrations of aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), antimony (Sb), selenium (Se), and zinc (Zn) in samples collected from women during their third trimester of pregnancy and from their female children at 8-13 years (nâ¯=â¯132). We measured serum testosterone, estradiol, dehydroepiandrosterone sulfate (DHEA-S), inhibin B, and sex hormone-binding globulin (SHBG) at age 8-13, and assessed Tanner stages for sexual maturation (breast, pubic hair development, and menarche status), at two time points (8-13, 14-18 years). We used linear regression to independently examine in utero and peripubertal metal concentrations as predictors of peripubertal hormones. In a longitudinal analysis using generalized estimation equations, we evaluated Tanner stage and menarche progression in relation to individual in utero and peripubertal metal concentrations. We found that higher in utero Zn was associated with increased inhibin B. Several metals at 8-13 years were associated with higher DHEA-S and estradiol, while Ni was positively but Cu was negatively associated with testosterone. In utero Ni, Al, and Cd were associated with slower progression of breast development after adjustment for child age and BMI z-score. For example, an IQR increase in in utero Al exposure was associated with 0.82 times lower odds of progressing to a higher Tanner stage for breast development per year (95% CI: 0.68, 0.99). Peripubertal concentrations of Ba and Al were also associated with being at a higher pubic hair Tanner stage and menarche at 8-13, but lower odds of progressing to the next stage at 14-18 years. We used Bayesian kernel machine regression (BKMR) to model the joint effect of multiple metals while accounting for correlated exposures, as well as potential non-linear relationships between metals and outcomes of interest, which yielded results similar to individual analyses. These findings suggest that female reproductive development may be vulnerable to the effects of metal exposure, and using both Tanner stages and hormone levels may provide clues about underlying mechanisms in two sensitive periods of development.