Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(16): 12306-12315, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38623876

RESUMEN

Highly unsaturated carbon chains are generated in combustion processes and electrical discharges, and are confirmed constituents of the interstellar medium. In hydrogen-rich environments smaller carbon clusters tend to exist as linear chains, capped on each end by hydrogen atoms. Although the HC2nH+ polyacetylene chains have been extensively characterized spectroscopically, the corresponding odd HC2n+1H+ chains have received far less attention. Here we use two-colour resonance enhanced photodissociation spectroscopy to measure electronic spectra for HC2n+1H+ (n = 2-6) chains contained in a cryogenically cooled quadrupole ion trap. The HC2n+1H+ chains are formed either top-down by ionizing and fragmenting pyrene molecules using pulsed 266 nm radiation, or bottom-up by reacting cyclic carbon cluster cations with acetylene. Ion mobility measurements confirm that the HC2n+1H+ species are linear, consistent with predictions from electronic structure calculations. The HC2n+1H+ electronic spectra exhibit three band systems in the visible/near infrared spectral range, which each shifts progressively to longer wavelength by ≈90 nm with the addition of each additional CC subunit. The strongest visible HC11H+ band has a wavelength (λ = 545.1 nm) and width (1.5 nm) that match the strong λ 5450 diffuse interstellar band (DIB). However, other weaker HC11H+ bands do not correspond to catalogued DIBs, casting doubt on the role of HC11H+ as a carrier for the λ 5450 DIB. There are no identifiable correspondences between catalogued DIBs and bands for the other HC2n+1H+ chains, allowing upper limits to be established for their column densities in diffuse interstellar clouds.

2.
J Phys Chem A ; 127(5): 1168-1178, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36703560

RESUMEN

Carbon aggregates containing between 10 and 30 atoms preferentially arrange themselves as planar rings. To learn more about this exotic allotrope of carbon, electronic spectra are measured for even cyclo[n]carbon radical cations (C14+-C36+) using two-color photodissociation action spectroscopy. To eliminate spectral contributions from other isomers, the target cyclo[n]carbon radical cations are isomer-selected using a drift tube ion mobility spectrometer prior to spectroscopic interrogation. The electronic spectra exhibit sharp transitions spanning the visible and near-infrared spectral regions with the main absorption band shifting progressively to longer wavelength by ≈100 nm for every additional two carbon atoms. This behavior is rationalized with a Hückel theory model describing the energies of the in-plane and out-of-plane π orbitals. Photoexcitation of smaller carbon rings leads preferentially to neutral C3 and C5 loss, whereas rings larger than C24+ tend to also decompose into two smaller rings, which, when possible, have aromatic stability. Generally, the observed charged photofragments correspond to low energy fragment pairs, as predicted by density functional theory calculations (CAM-B3LYP-D3(BJ)/cc-pVDZ). Using action spectroscopy it is confirmed that C14+ and C18+ photofragments from C28+ rings have cyclic structures.

3.
J Chem Phys ; 159(2)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37428057

RESUMEN

Understanding and controlling the chemical behavior of iron and iron oxide clusters requires accurate thermochemical data, which, because of the complex electronic structure of transition metal clusters, can be difficult to calculate reliably. Here, dissociation energies for Fe2+, Fe2O+, and Fe2O2+ are measured using resonance enhanced photodissociation of clusters contained in a cryogenically cooled ion trap. The photodissociation action spectrum of each species exhibits an abrupt onset for the production of Fe+ photofragments from which bond dissociation energies are deduced for Fe2+ (2.529 ± 0.006 eV), Fe2O+ (3.503 ± 0.006 eV), and Fe2O2+ (4.104 ± 0.006 eV). Using previously measured ionization potentials and electron affinities for Fe and Fe2, bond dissociation energies are determined for Fe2 (0.93 ± 0.01 eV) and Fe2- (1.68 ± 0.01 eV). Measured dissociation energies are used to derive heats of formation ΔfH0(Fe2+) = 1344 ± 2 kJ/mol, ΔfH0(Fe2) = 737 ± 2 kJ/mol, ΔfH0(Fe2-) = 649 ± 2 kJ/mol, ΔfH0(Fe2O+) = 1094 ± 2 kJ/mol, and ΔfH0(Fe2O2+) = 853 ± 21 kJ/mol. The Fe2O2+ ions studied here are determined to have a ring structure based on drift tube ion mobility measurements prior to their confinement in the cryogenic ion trap. The photodissociation measurements significantly improve the accuracy of basic thermochemical data for these small, fundamental iron and iron oxide clusters.

4.
J Phys Chem A ; 126(38): 6678-6685, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36107403

RESUMEN

Electronic spectra are measured for protonated carbon clusters (C2n+1H+) containing between 7 and 21 carbon atoms. Linear and cyclic C2n+1H+ isomers are separated and selected using a drift tube ion mobility stage before being mass selected and introduced into a cryogenically cooled ion trap. Spectra are measured using a two-color resonance-enhanced photodissociation strategy, monitoring C2n+1+ photofragments (H atom loss channel) as a function of excitation wavelength. The linear C7H+, C9H+, C11H+, C13H+, C15H+, and C17H+ clusters, which are predicted to have polyynic structures, possess sharp 11Σ+ ← X̃1Σ+ transitions with well-resolved vibronic progressions in C-C stretch vibrational modes. The vibronic features are reproduced by spectral simulations based on vibrational frequencies and geometries calculated with time-dependent density functional theory (ωB97X-D/cc-pVDZ level). The cyclic C15H+, C17H+, C19H+, and C21H+ clusters exhibit weak, broad transitions at a shorter wavelength compared to their linear counterparts. Wavelengths for the origin transitions of both linear and cyclic isomers shift linearly with the number of constituent carbon atoms, indicating that in both cases, the clusters possess a common structural motif.

5.
J Chem Phys ; 155(21): 214302, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879679

RESUMEN

Electronic spectra are measured for mass-selected C2n +(n = 6-14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C2n +(n = 6-14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C22 + and larger clusters. The C2n + electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C12 +, C16 +, C20 +, C24 +, and C28 + are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C14 +, C18 +, C22 +, and C26 + are narrower, consistent with slower non-radiative deactivation.

6.
Rev Sci Instrum ; 93(4): 043201, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489918

RESUMEN

Infrared and electronic spectra are indispensable for understanding the structural and energetic properties of charged molecules and clusters in the gas phase. However, the presence of isomers can potentially complicate the interpretation of spectra, even if the target molecules or clusters are mass-selected beforehand. Here, we describe an instrument for spectroscopically characterizing charged molecular clusters that have been selected according to both their isomeric form and their mass-to-charge ratio. Cluster ions generated by laser ablation of a solid sample are selected according to their collision cross sections with helium buffer gas using a drift tube ion mobility spectrometer and their mass-to-charge ratio using a quadrupole mass filter. The mobility- and mass-selected target ions are introduced into a cryogenically cooled, three-dimensional quadrupole ion trap where they are thermalized through inelastic collisions with an inert buffer gas (He or He/N2 mixture). Spectra of the molecular ions are obtained by tagging them with inert atoms or molecules (Ne and N2), which are dislodged following resonant excitation of an electronic transition, or by photodissociating the cluster itself following absorption of one or more photons. An electronic spectrum is generated by monitoring the charged photofragment yield as a function of wavelength. The capacity of the instrument is illustrated with the resonance-enhanced photodissociation action spectra of carbon clusters (Cn +) and polyacetylene cations (HC2nH+) that have been selected according to the mass-to-charge ratio and collision cross section with He buffer gas and of mass-selected Au2 + and Au2Ag+ clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA