Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Breast Cancer Res ; 14(3): R84, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22621373

RESUMEN

INTRODUCTION: Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells. METHODS: CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion. RESULTS: Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen. CONCLUSION: HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.


Asunto(s)
Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Neoplasias Basocelulares/metabolismo , Serina Proteasas/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Catepsina K/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Receptores de Hialuranos/genética , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Interferencia de ARN , ARN Interferente Pequeño , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Transducción de Señal , Regulación hacia Arriba , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
2.
Crit Rev Oncog ; 27(1): 25-43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993977

RESUMEN

Inflammation is a key risk factor and functional driver in the initiation and progression of prostate cancer (PCa). De-regulated cytokine and chemokine signaling facilitates critical communication between tumor cells and multiple cell lineages within the tumor microenvironment (TME). Historical attempts at using targeted approaches to disrupt inflammation have been disappointing, with sub-optimal or negligible clinical benefit. Our increased awareness of the myeloid infiltrate in supporting the acquisition of castrate resistance and underpinning the abject response of advanced PCa to immunotherapy has re-focused attention on improved strategies to disrupt these complex cytokine and chemokine signaling networks within the TME. These ongoing and prospective strategies are principally focused on employing cytokine-/chemokine-directed therapies in informed combination with androgen signaling inhibitors or immunotherapeutic agents and, increasingly, with due consideration of the genetic context of the tumor. The availability of molecular-targeted therapeutic agents directed against the critical signal transduction nodes activated by cytokine and chemokine signaling in tumor cells provides opportunities to reduce the impacts of biological redundancy. Precision-based trials that deploy this latest generation of cytokine- and chemokine-directed therapeutics, directed to enriched patient cohorts in a biologically informed and biomarker-guided manner, have the potential to diversify the armamentarium of agents that is required in order to transform long-term outcomes for a currently incurable and genetically heterogenous disease.


Asunto(s)
Citocinas , Neoplasias de la Próstata , Quimiocinas/uso terapéutico , Humanos , Inflamación , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Microambiente Tumoral
3.
Mol Cancer Res ; 20(6): 841-853, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35302608

RESUMEN

Inhibiting androgen signaling using androgen signaling inhibitors (ASI) remains the primary treatment for castrate-resistant prostate cancer. Acquired resistance to androgen receptor (AR)-targeted therapy represents a major impediment to durable clinical response. Understanding resistance mechanisms, including the role of AR expressed in other cell types within the tumor microenvironment, will extend the clinical benefit of AR-targeted therapy. Here, we show the ASI enzalutamide induces vascular catastrophe and promotes hypoxia and microenvironment adaptation. We characterize treatment-induced hypoxia, and subsequent induction of angiogenesis, as novel mechanisms of relapse to enzalutamide, highlighting the importance of two hypoxia-regulated cytokines in underpinning relapse. We confirmed AR expression in CD34+ vascular endothelium of biopsy tissue and human vascular endothelial cells (HVEC). Enzalutamide attenuated angiogenic tubule formation and induced cytotoxicity in HVECs in vitro, and rapidly induced sustained hypoxia in LNCaP xenografts. Subsequent reoxygenation, following prolonged enzalutamide treatment, was associated with increased tumor vessel density and accelerated tumor growth. Hypoxia increased AR expression and transcriptional activity in prostate cells in vitro. Coinhibition of IL8 and VEGF-A restored tumor response in the presence of enzalutamide, confirming the functional importance of their elevated expression in enzalutamide-resistant models. Moreover, coinhibition of IL8 and VEGF-A resulted in a durable, effective resolution of enzalutamide-sensitive prostate tumors. We conclude that concurrent inhibition of two hypoxia-induced factors, IL8 and VEGF-A, prolongs tumor sensitivity to enzalutamide in preclinical models and may delay the onset of enzalutamide resistance. IMPLICATIONS: Targeting hypoxia-induced signaling may extend the therapeutic benefit of enzalutamide, providing an improved treatment strategy for patients with resistant disease.


Asunto(s)
Antagonistas de Receptores Androgénicos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Células Endoteliales/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Interleucina-8/genética , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nitrilos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/genética
4.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396656

RESUMEN

Radical radiotherapy, often in combination with hormone ablation, is a safe and effective treatment option for localised or locally-advanced prostate cancer. However, up to 30% of patients with locally advanced PCa will go on to develop biochemical failure, within 5 years, following initial radiotherapy. Improving radiotherapy response is clinically important since patients exhibiting biochemical failure develop castrate-resistant metastatic disease for which there is no curative therapy and median survival is 8-18 months. The aim of this research was to determine if loss of PTEN (highly prevalent in advanced prostate cancer) is a novel therapeutic target in the treatment of advanced prostate cancer. Previous work has demonstrated PTEN-deficient cells are sensitised to inhibitors of ATM, a key regulator in the response to DSBs. Here, we have shown the role of PTEN in cellular response to IR was both complex and context-dependent. Secondly, we have confirmed ATM inhibition in PTEN-depleted cell models, enhances ionising radiation-induced cell killing with minimal toxicity to normal prostate RWPE-1 cells. Furthermore, combined treatment significantly inhibited PTEN-deficient tumour growth compared to PTEN-expressing counterparts, with minimal toxicity observed. We have further shown PTEN loss is accompanied by increased endogenous levels of ROS and DNA damage. Taken together, these findings provide pre-clinical data for future clinical evaluation of ATM inhibitors as a neoadjuvant/adjuvant in combination with radiation therapy in prostate cancer patients harbouring PTEN mutations.

5.
NAR Cancer ; 2(3): zcaa012, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32743555

RESUMEN

Functional impairment of the tumour suppressor PTEN is common in primary prostate cancer and has been linked to relapse post-radiotherapy (post-RT). Pre-clinical modelling supports elevated CXC chemokine signalling as a critical mediator of PTEN-depleted disease progression and therapeutic resistance. We assessed the correlation of PTEN deficiency with CXC chemokine signalling and its association with clinical outcomes. Gene expression analysis characterized a PTEN LOW/CXCR1HIGH/CXCR2HIGH cluster of tumours that associates with earlier time to biochemical recurrence [hazard ratio (HR) 5.87 and 2.65, respectively] and development of systemic metastasis (HR 3.51). In vitro, CXCL signalling was further amplified following exposure of PTEN-deficient prostate cancer cell lines to ionizing radiation (IR). Inhibition of CXCR1/2 signalling in PTEN-depleted cell-based models increased IR sensitivity. In vivo, administration of a CXCR1/2-targeted pepducin (x1/2pal-i3), or CXCR2-specific antagonist (AZD5069), in combination with IR to PTEN-deficient xenografts attenuated tumour growth and progression compared to control or IR alone. Post-mortem analysis confirmed that x1/2pal-i3 administration attenuated IR-induced CXCL signalling and anti-apoptotic protein expression. Interventions targeting CXC chemokine signalling may provide an effective strategy to combine with RT in locally advanced prostate cancer patients with known presence of PTEN-deficient foci.

6.
Clin Cancer Res ; 14(21): 6735-41, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18980965

RESUMEN

Interleukin-8 (IL-8) is a proinflammatory CXC chemokine associated with the promotion of neutrophil chemotaxis and degranulation. This chemokine activates multiple intracellular signaling pathways downstream of two cell-surface, G protein-coupled receptors (CXCR1 and CXCR2). Increased expression of IL-8 and/or its receptors has been characterized in cancer cells, endothelial cells, infiltrating neutrophils, and tumor-associated macrophages, suggesting that IL-8 may function as a significant regulatory factor within the tumor microenvironment. The induction of IL-8 signaling activates multiple upstream signaling pathways that (a) impinge on gene expression via regulation of numerous transcription factor activities, (b) modulate the cellular proteome at the level of translation, and/or (c) effect the organization of the cell cytoskeleton through posttranslational regulation of regulatory proteins. As a consequence of the diversity of effectors and downstream targets, IL-8 signaling promotes angiogenic responses in endothelial cells, increases proliferation and survival of endothelial and cancer cells, and potentiates the migration of cancer cells, endothelial cells, and infiltrating neutrophils at the tumor site. Accordingly, IL-8 expression correlates with the angiogenesis, tumorigenicity, and metastasis of tumors in numerous xenograft and orthotopic in vivo models. Recently, IL-8 signaling has been implicated in regulating the transcriptional activity of the androgen receptor, underpinning the transition to an androgen-independent proliferation of prostate cancer cells. In addition, stress and drug-induced IL-8 signaling has been shown to confer chemotherapeutic resistance in cancer cells. Therefore, inhibiting the effects of IL-8 signaling may be a significant therapeutic intervention in targeting the tumor microenvironment.


Asunto(s)
Interleucina-8/metabolismo , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocinas CXC/metabolismo , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Neovascularización Patológica/tratamiento farmacológico
7.
Mol Cancer Ther ; 7(9): 2649-61, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18790747

RESUMEN

Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c-FLIP(L) and c-FLIP(S), two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappaB-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Interleucina-8/metabolismo , Neoplasias de la Próstata/genética , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Transcripción Genética/efectos de los fármacos , Andrógenos/farmacología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular Tumoral , Docetaxel , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Compuestos Organoplatinos/farmacología , Oxaliplatino , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/farmacología , Taxoides/farmacología
8.
Carcinogenesis ; 29(6): 1148-56, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18487223

RESUMEN

The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Interleucina-8/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/fisiología , Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Antineoplásicos Hormonales/farmacología , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Masculino , Nitrilos/farmacología , ARN Interferente Pequeño , Receptores Androgénicos/efectos de los fármacos , Receptores de Interleucina-8B/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Compuestos de Tosilo/farmacología , Transfección
9.
Mol Cancer Res ; 5(7): 737-48, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17606477

RESUMEN

We have shown previously that interleukin-8 (IL-8) and IL-8 receptor expression is elevated in tumor cells of human prostate biopsy tissue and correlates with increased cyclin D1 expression. Using PC3 and DU145 cell lines, we sought to determine whether IL-8 signaling regulated cyclin D1 expression in androgen-independent prostate cancer (AIPC) cells and to characterize the signaling pathways underpinning this response and that of IL-8-promoted proliferation. Administration of recombinant human IL-8 induced a rapid, time-dependent increase in cyclin D1 expression in AIPC cells, a response attenuated by the translation inhibitor cycloheximide but not by the RNA synthesis inhibitor, actinomycin D. Suppression of endogenous IL-8 signaling using neutralizing antibodies to IL-8 or its receptors also attenuated basal cyclin D1 expression in AIPC cells. Immunoblotting using phospho-specific antibodies confirmed that recombinant human IL-8 induced rapid time-dependent phosphorylation of Akt and the mammalian target of rapamycin substrate proteins, 4E-BP1 and ribosomal S6 kinase, resulting in a downstream phosphorylation of the ribosomal S6 protein (rS6). LY294002 and rapamycin each abrogated the IL-8-promoted phosphorylation of rS6 and attenuated the rate of AIPC cell proliferation. Our results indicate that IL-8 signaling (a) regulates cyclin D1 expression at the level of translation, (b) regulates the activation of proteins associated with the translation of capped and 5'-oligopyrimidine tract transcripts, and (c) activates signal transduction pathways underpinning AIPC cell proliferation. This study provides a molecular basis to support the correlation of IL-8 expression with that of cyclin D1 in human prostate cancer and suggests a mechanism by which this chemokine promotes cell proliferation.


Asunto(s)
Ciclina D1/biosíntesis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-8/farmacología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Andrógenos/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Activación Enzimática/efectos de los fármacos , Humanos , Interleucina-8/metabolismo , Masculino , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa D/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Proteína Quinasa C/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR
10.
Front Biosci ; 13: 4595-604, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18508531

RESUMEN

CXC-chemokines play an essential role in co-ordinating the function of the immune system. Increasingly, these small signaling molecules are recognized in facilitating communication between multiple cell types within the tumor microenvironment. This review will summarize the role of two members of this family, CXCL12 (stromal cell derived factor-1) and CXCL8 (interleukin-8) in promoting the disease progression of prostate cancer, the most prevalent non-cutaneous cancer in men in western society and the second leading cause of death from cancer in men. Evidence for a role of these chemokines in underpinning the development and progression of this disease is supported by examination of prostate tissue and serum samples from prostate cancer patients, from biochemical and molecular investigations conducted on representative cell-based models of this disease and from observation of CXC-chemokine promoted growth and systemic dissemination of human prostate tumors in experimental in vivo models. The future potential of employing strategies to attenuate chemokine expression or alternatively to selectively block chemokine receptor signaling to effect greater long-term control or enhanced therapeutic response in this disease is also discussed.


Asunto(s)
Quimiocinas CXC/fisiología , Neoplasias de la Próstata/fisiopatología , Quimiocina CXCL12/fisiología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-8/genética , Interleucina-8/fisiología , Masculino , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/fisiopatología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores CXCR4/fisiología , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/fisiología , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/fisiología
11.
J Pharmacol Exp Ther ; 327(3): 746-59, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18780829

RESUMEN

Constitutive activation of nuclear factor (NF)-kappaB is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappaB whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappaB activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappaB activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappaB activation in AIPC cells, increasing the transcription and expression of NF-kappaB-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappaB activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappaBorRNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappaB activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.


Asunto(s)
Resistencia a Antineoplásicos , FN-kappa B/metabolismo , Compuestos Organoplatinos/farmacología , Neoplasias de la Próstata/patología , Transcripción Genética , Antineoplásicos/farmacología , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Comunicación Autocrina , Línea Celular , Humanos , Interleucina-8/genética , Interleucina-8/fisiología , Masculino , Metástasis de la Neoplasia , Oxaliplatino , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/fisiología , Transducción de Señal
12.
Methods Mol Biol ; 1786: 195-206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29786794

RESUMEN

Cancer studies have entered an era that is heavily focused on the contribution of the tumor microenvironment. For this reason, in vivo experimentation in an immunodeficient model system is no longer fit for purpose. As a consequence, numerous genetically engineered mouse models (GEMMs) which self-develop tumors have been developed to allow experiments to be performed in a fully immunocompetent setting. One of the most commonly used technologies is Cre-loxP recombination due to its unique ability to control target gene expression in a specified tissue type. However, the major limitation of these models remains the inability to generate sufficient numbers of age-matched mice for a synchronized experimental start date. For this reason, the derivation of cell lines from genetically modified murine prostate tissue is desirable and allows for the generation of syngeneic models via subcutaneous or orthotopic injection.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Cruzamiento , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Marcación de Gen , Genotipo , Humanos , Masculino , Ratones , Recombinación Genética , Trasplante Isogénico
13.
Cancer Lett ; 237(1): 1-9, 2006 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-15979783

RESUMEN

The hyaluronan (HA) receptor CD44 has a well documented role in tumour metastasis. This review focuses on the potential significance of CD44 expression and function in regulating the metastasis of both haematological malignancies and solid tumours to the bone. Specifically, the review will discuss the evidence that HA-CD44 interactions facilitate the arrest of circulating malignant cells upon the bone marrow endothelial cells and discuss data that suggests CD44 may orchestrate the ability of tumour cells to regulate the modification of the bone matrix and support its colonisation by malignant cells.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias Hematológicas/metabolismo , Receptores de Hialuranos/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animales , Médula Ósea/inmunología , Médula Ósea/metabolismo , Médula Ósea/patología , Neoplasias Óseas/inmunología , Neoplasias Óseas/metabolismo , Remodelación Ósea , Adhesión Celular/inmunología , Proliferación Celular , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/patología , Humanos , Ácido Hialurónico/metabolismo , Células Neoplásicas Circulantes/inmunología , Células Neoplásicas Circulantes/patología
14.
Clin Cancer Res ; 11(11): 4117-27, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15930347

RESUMEN

PURPOSE: We characterized interleukin-8 (IL-8) and IL-8 receptor expression (CXCR1 and CXCR2) in prostate cancer to address their significance to this disease. EXPERIMENTAL DESIGN: Immunohistochemistry was conducted on 40 cases of human prostate biopsy containing histologically normal and neoplastic tissue, excised from patients with locally confined or invasive androgen-dependent prostate cancer, and 10 cases of transurethral resection of the prostate material from patients with androgen-independent disease. RESULTS: Weak to moderate IL-8 expression was strictly localized to the apical membrane of normal prostate epithelium. In contrast, membranous expression of IL-8, CXCR1, and CXCR2 was nonapical in cancer cells of Gleason pattern 3 and 4, whereas circumferential expression was present in Gleason pattern 5 and androgen-independent prostate cancer. Each of IL-8, CXCR1, and CXCR2 were also increasingly localized to the cytoplasm of cancer cells in correlation with advancing stage of disease. Cytoplasmic expression (but not apical membrane expression) of IL-8 in Gleason pattern 3 and 4 cancer correlated with Ki-67 expression (R = 0.79; P < 0.001), cyclin D1 expression (R = 0.79; P < 0.001), and microvessel density (R = 0.81; P < 0.001). In vitro studies on androgen-independent PC3 cells confirmed the mitogenic activity of IL-8, increasing the rate of cell proliferation through activation of both CXCR1 and CXCR2 receptors. CONCLUSIONS: We propose that the concurrent increase in IL-8 and IL-8 receptor expression in human prostate cancer induces autocrine signaling that may be functionally significant in initiating and promoting the progression of prostate cancer by underpinning cell proliferation and angiogenesis.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Proliferación Celular , Neovascularización Patológica/patología , Neoplasias de la Próstata/patología , Anciano , Andrógenos/metabolismo , Biopsia , Línea Celular Tumoral , Ciclina D1/biosíntesis , Citoplasma/metabolismo , Humanos , Inmunohistoquímica , Interleucina-8/biosíntesis , Masculino , Próstata/química , Próstata/patología , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/metabolismo , Receptores de Interleucina-8A/biosíntesis , Receptores de Interleucina-8B/biosíntesis
15.
Cancer Res ; 64(16): 5702-11, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15313910

RESUMEN

The aim of this current study was to examine the significance of CD44 expression in mediating cancer cell adhesion to human bone marrow endothelial cell(s) (hBMEC). Differential CD44 expression on two metastatic prostate cancer cell lines, PC3 (CD44 +ve) and DU145 (CD44 -ve) and four breast cancer cell lines was confirmed by immunoblotting and immunocytochemistry. In cell adhesion assays, PC3 but not DU145 cells demonstrated a rapid adhesion to hBMECs. Treatment of PC3 cells with a neutralizing antibody against CD44 standard (CD44s) and CD44 splice variants decreased PC3 cell adhesion to hBMECs. Similarly, depletion of CD44 expression using RNA interference decreased the ability of PC3 cells and two CD44 +ve breast cancer cell lines (MDA-MB-231 and MDA-MB-157) to bind FITC-conjugated hyaluronan (FITC-HA) and to adhere to hBMECs. In contrast, transfection of DU145 cells or the T47D and MCF-7 breast cancer cell lines to express CD44s increased cell surface binding of FITC-HA and cell adherence to hBMECs. Treatment of PC3 and MDA-MD-231 cells but not hBMECs with hyaluronidase attenuated cell adhesion, suggesting that cell surface expression of CD44 on prostate and breast cancer cells may promote the retention of a HA coat that facilitates their initial arrest on bone marrow endothelium.


Asunto(s)
Células de la Médula Ósea/patología , Neoplasias de la Mama/patología , Receptores de Hialuranos/fisiología , Neoplasias de la Próstata/patología , Células de la Médula Ósea/metabolismo , Neoplasias de la Mama/metabolismo , Adhesión Celular/fisiología , Endotelio/metabolismo , Endotelio/patología , Humanos , Receptores de Hialuranos/biosíntesis , Ácido Hialurónico/metabolismo , Inmunohistoquímica , Masculino , Neoplasias de la Próstata/metabolismo , Interferencia de ARN
16.
Oncotarget ; 7(7): 7885-98, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26799286

RESUMEN

PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.


Asunto(s)
Quimioradioterapia , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Macrófagos/patología , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Western Blotting , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Quimiotaxis/efectos de la radiación , Metilación de ADN/efectos de los fármacos , Metilación de ADN/efectos de la radiación , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Proteínas Inhibidoras de la Apoptosis/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Interleucina-8/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/efectos de la radiación , Masculino , Clasificación del Tumor , Pronóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Rayos X
17.
Oncotarget ; 6(34): 36762-73, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26447611

RESUMEN

CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of ß1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the ß1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with ß1-integrin and repressed HA-induced, CD44-mediated activation of ß1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and ß1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cortactina/metabolismo , Fibronectinas/metabolismo , Receptores de Hialuranos/metabolismo , Integrina alfa5beta1/metabolismo , Paxillin/metabolismo , Neoplasias de la Mama/genética , Adhesión Celular/fisiología , Línea Celular Tumoral , Femenino , Humanos , Integrina alfa5beta1/biosíntesis , Transducción de Señal
18.
Oncotarget ; 6(13): 11465-76, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25888636

RESUMEN

Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Receptores de Hialuranos/metabolismo , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Supervivencia Celular , Supervivencia sin Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Receptores de Hialuranos/genética , Estimación de Kaplan-Meier , Metástasis Linfática , Ratones Desnudos , Persona de Mediana Edad , Clasificación del Tumor , Fenotipo , Modelos de Riesgos Proporcionales , Interferencia de ARN , Factores de Riesgo , Transducción de Señal , Factores de Tiempo , Transfección , Carga Tumoral
19.
Oncotarget ; 6(14): 12763-73, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25906747

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the Western world. It is becoming increasingly clear that CRC is a diverse disease, as exemplified by the identification of subgroups of CRC tumours that are driven by distinct biology. Recently, a number of studies have begun to define panels of diagnostically relevant markers to align patients into individual subgroups in an attempt to give information on prognosis and treatment response. We examined the immunohistochemical expression profile of 18 markers, each representing a putative role in cancer development, in 493 primary colorectal carcinomas using tissue microarrays. Through unsupervised clustering in stage II cancers, we identified two cluster groups that are broadly defined by inflammatory or immune-related factors (CD3, CD8, COX-2 and FOXP3) and stem-like factors (CD44, LGR5, SOX2, OCT4). The expression of the stem-like group markers was associated with a significantly worse prognosis compared to cases with lower expression. In addition, patients classified in the stem-like subgroup displayed a trend towards a benefit from adjuvant treatment. The biologically relevant and poor prognostic stem-like group could also be identified in early stage I cancers, suggesting a potential opportunity for the identification of aggressive tumors at a very early stage of the disease.


Asunto(s)
Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Anciano , Biomarcadores de Tumor/análisis , Análisis por Conglomerados , Neoplasias Colorrectales/mortalidad , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Matrices Tisulares
20.
J Med Chem ; 46(12): 2427-35, 2003 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-12773046

RESUMEN

Seventeen novel analogues of human calcitonin gene-related peptide(8-37) (hCGRP(8-37)) were synthesized by solid-phase methods and purified to apparent homogeneity by semipreparative cation exchange and/or reversed-phase high-performance liquid chromatography. The C-terminal Phe was replaced by Gly, cyclohexylalanine (Cha), Tyr, all four isomers of beta-methylphenylalanine (beta-MePhe), and l- and d-tetrahydroisoquinoline carboxylic acid (Tic), resulting in analogues 3-11. For the synthesis of the beta-MePhe-containing analogues 6-9, crystallization was used to separate a mixture of all four isomers of beta-MePhe into the erythro pair of enantiomers (2S,3S, 2R,3R) and the threo pair of enantiomers (2S,3R, 2R,3S), which were then converted to Fmoc derivatives and used in two separate syntheses. Two diastereomeric peptides were obtained from each synthesis and were separated by RP-HPLC to yield enantiomerically pure 6-9. Substitution of Tyr for Phe caused no change in binding affinity at CGRP receptors. All other substitutions for Phe resulted in substantial reductions in binding affinity. Indeed, no binding was observed for analogues 7, 9, and 11, all of which contained a d-amino acid residue in the C-terminal position, and the binding affinities of the remaining analogues were >10-fold lower than that of h-alpha-CGRP(8-37). These data suggest that a conformationally flexible phenyl ring in the C-terminal position of h-alpha-CGRP(8-37) is preferred for high-affinity binding to CGRP receptors. Acetylation, benzoylation, and benzylation of the N-termini of h-alpha-CGRP(8-37) and h-beta-CGRP(8-37) produced analogues 12-14 and 16-18, respectively. A byproduct was isolated by RP-HPLC from the resin-cleaved crude product of each benzylated analogue, which was characterized as the dibenzylated derivative of h-alpha-CGRP(8-37) and h-beta-CGRP(8-37) (analogues 15 and 19, respectively). Amino acid analysis and (1)H NMR showed that the second benzyl group was located on the C4 carbon of the imidazole ring of His(10). Radioligand binding experiments showed that derivatizing the N-termini substantially increased binding affinities at CGRP receptors. The benzoylated and dibenzylated derivatives had the highest affinities, which were approximately 50-fold greater than those of h-alpha-CGRP(8-37). Functional experiments confirmed that the N-terminally derivatized analogues of h-alpha-CGRP(8-37) are antagonists that are more potent than h-alpha-CGRP(8-37). In conclusion, these studies underscore the importance of Phe(37) of h-alpha-CGRP(8-37) for binding to CGRP receptors and have identified the N-terminus and His(10) as two positions that can be used for the design of antagonists with increased affinity for CGRP receptors.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Péptido Relacionado con Gen de Calcitonina/síntesis química , Fragmentos de Péptidos/síntesis química , Animales , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/farmacología , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiología , Humanos , Técnicas In Vitro , Membranas , Relajación Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Ensayo de Unión Radioligante , Receptores de Péptido Relacionado con el Gen de Calcitonina/agonistas , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Relación Estructura-Actividad , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA