Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol ; 36(12): 2578-2588, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34599545

RESUMEN

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) shows little or no toxicity in most normal cells and preferentially induces apoptosis in a variety of malignant cells. However, patients develop resistance to TRAIL, therefore, sensitizing agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are necessary. In this study, we investigated the effect of 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), an useful flavonoid, to overcome the TRAIL-resistant triple negative breast cancer (TNBC) cells. We found that CSC-3436 potentiated TRAIL-induced apoptosis in TRAIL-resistant TNBC cells and this correlated with the upregulation of death receptors (DR)-5 and down-regulation of decreased decoy receptor (DcR)-1 expression. When examined for its mechanism, we found that the decreased expression of anti-apoptotic proteins c-FLIPS/L, Bcl-Xl, Bcl-2, Survivin, and XIAP. CSC-3436 would increase the expression of Bax and promoted the cleavage of bid. In addition, the induction of DR5 by CSC-3436 was found to be dependent on the modulation of reactive oxygen species (ROS)/p38/C/EBP-homologous protein (CHOP) signaling pathways. Overall, our results indicated that CSC-3436 could potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and upregulation of DR5 via the ROS-mediated upregulation of CHOP protein.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Neoplasias de la Mama Triple Negativas , Apoptosis , Línea Celular Tumoral , Humanos , Ligandos , Naftiridinas , Especies Reactivas de Oxígeno , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF , Factor de Transcripción CHOP/genética
2.
Environ Toxicol ; 36(11): 2186-2195, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34291863

RESUMEN

Bladder cancer is the most common malignancy of the urinary tract and arising from the epithelial lining of the urinary bladder. Resistance to cytotoxic therapies is associated with overexpression of oncogenic proteins; including HER2, and Akt in chemotherapy resistance of bladder cancer. Various studies demonstrated that curcuminoids, the most important active phenolic compounds of turmeric (Curcuma longa), have anti-tumor activities in a wide range of human malignant cell lines. The aim of this study is to evaluate whether curcuminoids (curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin) could repress the expression of HER2 in HER2-overexpressing bladder cancer cells. Among the test compounds, DMC significantly suppressed the expression of HER2, and preferentially inhibited cell proliferation and induced apoptosis in HER2-overexpressing bladder cancer cells. DMC decreases HER2 level through inhibiting the interaction of HER2 and Hsp90. Our study also indicated that DMC showed additive activity in combination with chemotherapeutic agents, including paclitaxel and cisplatin. These findings show that DMC should be developed further as a new antitumor drug candidate for treatment of HER2-overexpressing bladder cancer.


Asunto(s)
Curcumina , Neoplasias de la Vejiga Urinaria , Apoptosis , Línea Celular Tumoral , Curcumina/farmacología , Diarilheptanoides , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Receptor ErbB-2 , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
3.
Environ Toxicol ; 35(9): 911-921, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32270916

RESUMEN

Leukemia is one of the major diseases causing cancer-related deaths in the young population, and its cure rate is unsatisfying with side effects on patients. Fluorouracil (5-FU) is currently used as an anticancer drug for leukemia patients. Casticin, a natural polymethoxyflavone, exerts anticancer activity against many human cancer cell lines in vitro, but no other reports show 5-FU combined with casticin increased the mouse leukemia cell apoptosis in vitro. Herein, the antileukemia activity of 5-FU combined with casticin in WEHI-3 mouse leukemia cells was investigated in vitro. Treatment of two-drug combination had a higher decrease in cell viability and a higher increase in apoptotic cell death, the level of DNA condensation, and the length of comet tail than that of 5-FU or casticin treatment alone in WEHI-3 cells. In addition, the two-drug combination has a greater production rate of reactive oxygen species but a lower level of Ca2+ release and mitochondrial membrane potential (ΔΨm ) than that of 5-FU alone. Combined drugs also induced higher caspase-3 and caspase-8 activities than that of casticin alone and higher caspase-9 activity than that of 5-FU or casticin alone at 48 hours treatment. Furthermore, 5-FU combined with casticin has a higher expression of Cu/Zn superoxide dismutase (SOD [Cu/Zn]) and lower catalase than that of 5-FU or casticin treatment alone. The combined treatment has higher levels of Bax, Endo G, and cytochrome C of proapoptotic proteins than that of casticin alone and induced lower levels of B-cell lymphoma 2 (BCL-2) and BCL-X of antiapoptotic proteins than that of 5-FU or casticin only. Furthermore, the combined treatment had a higher expression of cleaved poly (ADP-ribose) polymerase (PARP) than that of casticin only. Based on these findings, we may suggest that 5-FU combined with casticin treatment increased apoptotic cell death in WEHI-3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Flavonoides/farmacología , Fluorouracilo/farmacología , Animales , Antineoplásicos/administración & dosificación , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Sinergismo Farmacológico , Flavonoides/administración & dosificación , Fluorouracilo/administración & dosificación , Humanos , Leucemia/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Molecules ; 25(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952105

RESUMEN

Casticin was obtained from natural plants, and it has been shown to exert biological functions; however, no report concerns the induction of DNA damage and repair in human lung cancer cells. The objective of this study was to investigate the effects and molecular mechanism of casticin on DNA damage and repair in human lung cancer A549 cells. Cell viability was determined by flow cytometric assay. The DNA damage was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining and electrophoresis which included comet assay and DNA gel electrophoresis. The protein levels associated with DNA damage and repair were analyzed by western blotting. The expression and translocation of p-H2A.X were observed by confocal laser microscopy. Casticin reduced total viable cell number and induced DNA condensation, fragmentation, and damage in A549 cells. Furthermore, casticin increased p-ATM at 6 h and increased p-ATR and BRCA1 at 6-24 h treatment but decreased p-ATM at 24-48 h, as well as decreased p-ATR and BRCA1 at 48 h. Furthermore, casticin decreased p-p53 at 6-24 h but increased at 48 h. Casticin increased p-H2A.X and MDC1 at 6-48 h treatment. In addition, casticin increased PARP (cleavage) at 6, 24, and 48 h treatment, DNA-PKcs and MGMT at 48 h in A549 cells. Casticin induced the expressions and nuclear translocation of p-H2AX in A549 cells by confocal laser microscopy. Casticin reduced cell number through DNA damage and condensation in human lung cancer A549 cells.


Asunto(s)
Apoptosis , Daño del ADN , Reparación del ADN , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Células A549 , Supervivencia Celular , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
5.
J Cell Physiol ; 234(6): 9118-9129, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30341909

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer deaths worldwide, especially in male. With poor prognosis, significant portions of patients with HNSCC die due to cancer recurrence and tumor metastasis after chemotherapy and targeted therapies. The HNSCC FaDu cell ectopic expression of Twist, a key transcriptional factor of epithelial-mesenchymal transition (EMT), which triggers EMT and results in the acquisition of a mesenchymal phenotype, was used as the cell model. Our results demonstrated that treatment with newly synthesized 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), a flavonoid derivative, elicited changes in its cell morphology, upregulated E-cadherin messenger RNA and protein expression, downregulated N-cadherin, vimentin, and CD133 (a marker associated with tumor-initiating cells) in FaDu-pCDH-Twist cells. Moreover, CSC-3436 exposure reduced B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) expression regulated by Twist and further suppressed the direct co-regulation of E-cadherin by Twist and Bmi1. Interestingly, CSC-3436 reduced EMT, cancer stemness, and migration/invasion abilities through the inhibition of the Twist/Bmi1-Akt/ß-catenin pathway. Most importantly, our findings provided new evidence that CSC-3436 played a crucial role in therapeutic targeting to Bmi1 and its molecular pathway in HNSCC, and it will be valuable in prognostic prediction and treatment.


Asunto(s)
Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Naftiridinas/farmacología , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Proteína 1 Relacionada con Twist/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1/genética , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/enzimología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/secundario , Proteína 1 Relacionada con Twist/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Cell Physiol ; 234(7): 10747-10760, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30584666

RESUMEN

We reported in our previously executed studies that the fermented culture broth of Antrodia salmonea (AS), a mushroom used in Taiwanese folk medicine induced reactive oxygen species (ROS)-mediated apoptosis in human ovarian carcinoma cells. In this study, we studied the anticancer efficacies of AS (0-240 µg/ml) by examining the key molecular events implicated in cell death associated with autophagy in SKOV-3 and A2780 human ovarian carcinoma cells and clarified the fundamental molecular mechanisms. Treatment of ovarian carcinoma cells with AS-induced autophagic cell death mediated by increased microtubule-associated protein LC3-II, GFP-LC3 puncta, and acidic vesicular organelle (AVO) formation. These events are linked with the activation of p62/SQSTM1, the inhibition of ATG4B, the expression of ATG7, and the dysregulation of Beclin-1/Bcl-2 (i.e., B-cell lymphoma 2). N-acetylcysteine inhibited AS-induced ROS generation, which in turn constricted AS-induced LC3 conversion, AVO formation, and ATG4B inhibition, indicating ROS-mediated autophagy cell death. In addition, the 3-methyladenine (3-MA) or chloroquine (CQ)-induced autophagy inhibition decreased AS-induced apoptosis. Additionally, apoptosis inhibition by Z-VAD-FMK, a pan-caspase inhibitor, substantially suppressed AS-induced autophagy. Furthermore, AS-inhibited HER-2/ neu and PI3K/AKT signaling pathways which were reversed by autophagy inhibitors 3-MA and CQ. Thus, A. salmonea is a potential chemopreventive agent that is capable of activating ROS-mediated autophagic cell death in ovarian carcinoma cells.


Asunto(s)
Antineoplásicos/farmacología , Antrodia , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/aislamiento & purificación , Antrodia/química , Apoptosis/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal
7.
Environ Toxicol ; 34(4): 434-442, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30578657

RESUMEN

Numerous evidences have shown that chrysin induced cytotoxic effects via induced cell cycle arrest and induction of cell apoptosis in human cancer cell lines, however, no information showed that chrysin inhibited skin cancer cell migration and invasion. In this study, we investigated anti-metastasis mechanisms of chrysin in human melanoma cancer A375.S2 cells in vitro. Under sub-lethal concentrations of chrysin (0, 5, 10, and 15 µM) which inhibits cell mobility, migration and invasion of A375.S2 cells that were assayed by wound healing and Transwell filter. That chrysin inhibited MMP-2 activity in A375.S2 cells was investigated by gelatin zymography assay. Western blotting was used to examine protein expression and results indicated that chrysin inhibited the expression of GRB2, SOS-1, PKC, p-AKT (Thr308), NF-κBp65, and NF-κBp50 at 24 and 48 hours treatment, but only at 10-15 µM of chrysin decreased Ras, PI3K, p-c-Jun, and Snail only at 48 hours treatment and only decrease p-AKT(Ser473) at 24 hours treatment. Furthermore, chrysin (5-15 µM) decreased the expression of uPA, N-cadherin and MMP-1 at 24 and 48 hours treatment but only decreased MMP-2 and VEGF at 48 hours treatment at 10-15 µM and 5-15 µM of chrysin, respectively, however, increased E-cadherin at 5-15 µM treatment. Results of confocal laser microscopy systems indicated that chrysin inhibited expression of NF-κBp65 in A375.S2 cells. Based on these observations, we suggest that chrysin can be used in anti-metastasis of human melanoma cells in the future.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/patología , FN-kappa B/metabolismo , Neoplasias Cutáneas/patología , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Melanoma/metabolismo , Invasividad Neoplásica , Neoplasias Cutáneas/metabolismo
8.
Environ Toxicol ; 34(4): 364-374, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30549224

RESUMEN

Tetrandrine (TET) has been reported to induce anti-cancer activity in many human cancer cells and also to inhibit cancer cell migration and invasion. However, there are no reports to show TET inhibits cell migration and invasion in human brain glioblastoma multiforme GBM 8401 cells. In this study, we investigated the anti-metastasis effects of TET on GBM 8401 cells in vitro. Under sub-lethal concentrations (from 1, 5 up to 10 µM), TET significantly inhibited cell mobility, migration and invasion of GBM 8401 cells that were assayed by wound healing and Transwell assays. Gelatin zymography assay showed that TET inhibited MMP-2 activity in GBM 8401 cells. Western blotting results indicated that TET inhibited several key metastasis-related proteins, such as p-EGFR(Tyr1068) , SOS-1, GRB2, Ras, p-AKT(Ser473) and p-AKT(Thr308) , NF-κB-p65, Snail, E-cadherin, N-cadherin, NF-κB, MMP-2 and MMP-9 that were significant reduction at 24 and 48 hours treatment by TET. TET reduced MAPK signaling associated proteins such as p-JNK1/2 and p-c-Jun in GBM 8401 cells. The electrophoretic mobility shift (EMSA) assay was used to investigate NF-κB and DNA binding was reduced by TET in a dose-dependently. Based on these findings, we suggested that TET could be used in anti-metastasis of human brain glioblastoma multiforme GBM 8401 cells in the future.


Asunto(s)
Anticarcinógenos/farmacología , Bencilisoquinolinas/farmacología , Neoplasias Encefálicas/patología , Movimiento Celular/efectos de los fármacos , Glioblastoma/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Invasividad Neoplásica , Transducción de Señal
9.
Arch Toxicol ; 91(10): 3341-3364, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28374157

RESUMEN

Flavokawain B (FKB), a naturally occurring chalcone in kava extracts, has been reported to possess anticancer activity. However, the effect of FKB on gastric cancer remains unclear. We examined the in vitro and in vivo anticancer activity and autophagy involvement of FKB and determined the underlying molecular mechanisms. FKB is potently cytotoxic to human gastric cancer cells (AGS/NCI-N87/KATO-III/TSGH9201) and mildly toxic towards normal (Hs738) cells and primary mouse hepatocytes. FKB-induced AGS cell death was characterized by autophagy, not apoptosis, as evidenced by increased LC3-II accumulation, GFP-LC3 puncta and acidic vesicular organelles (AVOs) formation, without resulting procaspase-3/PARP cleavage. FKB further caused p62/SQSTM1 activation, mTOR downregulation, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Silencing autophagy inhibitors CQ/3-MA and LC3 (shRNA) significantly reversed the FKB-induced cell death of AGS cells. FKB-triggered ROS generation and ROS inhibition by NAC pre-treatment diminished FKB-induced cell death, LC3 conversion, AVO formation, p62/SQSTM1 activation, ATG4B inhibition and Beclin-1/Bcl-2 dysregulation, which indicated ROS-mediated autophagy in AGS cells. Furthermore, FKB induces G2/M arrest and alters cell-cycle proteins through ROS-JNK signaling. Interestingly, FKB-induced autophagy is associated with the suppression of HER-2 and PI3K/AKT/mTOR signaling cascades. FKB inhibits apoptotic Bax expression, and Bax-transfected AGS cells exhibit both apoptosis and autophagy; thus, FKB-inactivated Bax results in apoptosis inhibition. In vivo data demonstrated that FKB effectively inhibited tumor growth, prolonged the survival rate, and induced autophagy in AGS-xenografted mice. Notably, silencing of LC3 attenuated FKB-induced autophagy in AGS-xenografted tumors. FKB may be a potential chemopreventive agent in the activation of ROS-mediated autophagy of gastric cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonoides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
10.
J Biomed Sci ; 23(1): 60, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27526942

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) lacks specific therapeutic target and limits to chemotherapy and is essential to develop novel therapeutic regimens. Increasing studies indicated that tamoxifen, a selective estrogen receptor modulators (SERMs), has anti-tumor therapeutic effect in estrogen receptor α (ERα)-negative tumor. Here, we determined whether autophagy was activated by tamoxifen in TNBC cells. Moreover, CSC-3436 displayed strong and selective growth inhibition on cancer cells. Next, we investigated the anti-proliferation effect of combination of CSC-3436 plus tamoxifen on cell death in TNBC cells. RESULTS: Our study found that tamoxifen induces autophagy in TNBC cells. Endoplasmic reticulum stress and AMPK/mTOR contributed tamoxifen-induced autophagy. Interestingly, in combination treatment with CSC-3436 enhanced the anti-proliferative effect of tamoxifen. We found that CSC-3436 switched tamoxifen-induced autophagy to apoptosis via cleavage of ATG-5. Moreover, AMPK/mTOR pathway may involve in CSC-3436 switched tamoxifen-induced autophagy to apoptosis. The combination of tamoxifen and CSC-3436 produced stronger tumor growth inhibition compared with CSC-3436 or tamoxifen alone treatments in vivo. CONCLUSION: These data indicated that CSC-3436 combined with tamoxifen may be a potential approach for treatment TNBC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos
11.
Proteomics ; 15(19): 3296-309, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26194454

RESUMEN

γ-Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti-proliferative activities against human oral squamous cell carcinoma (OSCC). γ-Bisabolene activated caspases-3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9-22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ-bisabolene was identified using TiO2-PDMS plate and LC-MS/MS, then confirmed using Western blotting and real-time RT-PCR assays. Phosphoproteome profiling revealed that γ-bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein-protein interaction network analysis proposed the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in γ-bisabolene-induced apoptosis. Subsequent assays indicated γ-bisabolene eliciting p53 acetylation that enhanced the expression of p53-regulated apoptotic genes. PP1 inhibitor-2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ-bisabolene-treated Ca9-22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ-bisabolene-induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in mitochondria-mediated apoptosis of γ-bisabolene-treated cells. This study demonstrated γ-bisabolene displaying potent anti-proliferative and apoptosis-inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ-bisabolene-induced apoptosis. The novel insight could be useful for developing anti-cancer drugs.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Histona Desacetilasa 2/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias de la Boca/metabolismo , Sesquiterpenos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/enzimología , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/enzimología , Fosfoproteínas/análisis , Proteómica , Sesquiterpenos/uso terapéutico
12.
Int J Biol Macromol ; 273(Pt 2): 133164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878919

RESUMEN

Obesity is a global health challenge that causes metabolic dysregulation and increases the risk of various chronic diseases. The gut microbiome is crucial in modulating host energy metabolism, immunity, and inflammation and is influenced by dietary factors. Gac fruit (Momordica cochinchinensis), widely consumed in Southeast Asia, has been proven to have various biological activities. However, the composition and effect of crude gac aril polysaccharides (GAP) on obesity and gut microbiota disturbed by high-fat diet (HFD) remain to be elucidated. Compositional analysis showed that GAP contains high oligosaccharides, with an average of 7-8 saccharide units. To mimic clinical obesity, mice were first made obese by feeding HFD for eight weeks. GAP intervention was performed from week 9 to week 20 in HFD-fed mice. Our results showed that GAP inhibited body weight gain, eWAT adipocyte hypertrophy, adipokine derangement, and hyperlipidemia in HFD-induced obese mice. GAP improved insulin sensitivity, impaired glucose tolerance, and hepatic steatosis. GAP modulated the gut microbiota composition and reversed the HFD-induced dysbiosis of at least 20 genera. Taken together, GAP improves metabolic health and modulates the gut microbiome to relieve obesity risk factors, demonstrating the potential of dietary GAP for treating obesity-associated disorders.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Obesidad , Polisacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/microbiología , Dieta Alta en Grasa/efectos adversos , Polisacáridos/farmacología , Ratones , Masculino , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/etiología , Disbiosis , Ratones Endogámicos C57BL , Resistencia a la Insulina
13.
Toxicol Appl Pharmacol ; 272(3): 746-56, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23921149

RESUMEN

The molecular basis of epithelial-mesenchymal transition (EMT) functions as a potential therapeutic target for breast cancer because EMT may endow breast tumor-initiating cells with stem-like characteristics and enable the dissemination of breast cancer cells. We have recently verified the antitumor activity of 3,5,4'-trimethoxystilbene (MR-3), a naturally methoxylated derivative of resveratrol, in colorectal cancer xenografts via an induction of apoptosis. The effect of MR-3 on EMT and the invasiveness of human MCF-7 breast adenocarcinoma cell line were also explored. We found that MR-3 significantly increased epithelial marker E-cadherin expression and triggered a cobblestone-like morphology of MCF-7 cells, while reciprocally decreasing the expression of mesenchymal markers, such as snail, slug, and vimentin. In parallel with EMT reversal, MR-3 downregulated the invasion and migration of MCF-7 cells. Exploring the action mechanism of MR-3 on the suppression of EMT and invasion indicates that MR-3 markedly reduced the expression and nuclear translocation of ß-catenin, accompanied with the downregulation of ß-catenin target genes and the increment of membrane-bound ß-catenin. These results suggest the involvement of Wnt/ß-catenin signaling in the MR-3-induced EMT reversion of MCF-7 cells. Notably, MR-3 restored glycogen synthase kinase-3ß activity by inhibiting the phosphorylation of Akt, the event required for ß-catenin destruction via a proteasome-mediated system. Overall, these findings indicate that the anti-invasive activity of MR-3 on MCF-7 cells may result from the suppression of EMT via down-regulating phosphatidylinositol 3-kinase (PI3K)/AKT signaling, and consequently, ß-catenin nuclear translocation. These occurrences ultimately lead to the blockage of EMT and the invasion of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estilbenos/farmacología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Anticarcinógenos/química , Anticarcinógenos/farmacología , Anticarcinógenos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Invasividad Neoplásica/prevención & control , Proteína Oncogénica v-akt/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Resveratrol , Estilbenos/química , Estilbenos/uso terapéutico , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/antagonistas & inhibidores
14.
Food Chem Toxicol ; 172: 113564, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563924

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 µg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.


Asunto(s)
Apoptosis , Neoplasias de Cabeza y Cuello , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Autofagia , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
15.
Artículo en Inglés | MEDLINE | ID: mdl-22701509

RESUMEN

Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Immunoblot analysis demonstrated that HER-2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by the suppression of PI3K/Akt, and their downstream effectors GSK-3ß and ß-catenin. Notably, AC-treatment induced apoptotic cell death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release, caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against human HER-2/neu-overexpressing breast cancers.

16.
Artículo en Inglés | MEDLINE | ID: mdl-22007260

RESUMEN

Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2) and control vector MCF-7 (MCF-7/VEC) cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-κB- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells.

17.
Food Chem ; 134(3): 1320-6, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25005949

RESUMEN

Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Arctium/química , Peso Corporal/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Western Blotting , Células Hep G2 , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
18.
J Fluoresc ; 21(4): 1669-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21360297

RESUMEN

We report the development of Herceptin-conjugated fluorescent polymeric nanoparticles (PNp) probes. Synthesis of fluorescent conjugated polymer as the core, preparation of the core/shell PNp, the ability of immobilizing Herceptin on PNp, targeting and imaging of bioconjugated PNp toward HER2-overexpressing cancer cells, and therapeutic effect on cell cycle, together with the expression of apoptosis related proteins, were investigated. We have achieved active tumor targeting by rapid PNp-antibody binding to tumor-specific antigens. Besides, Herceptin-conjugated PNp can suppress the growth of HER2-overexpressing cancer cells.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Imagen Molecular , Nanopartículas/química , Polímeros/química , Polímeros/farmacología , Animales , Anticuerpos Monoclonales Humanizados/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorescencia , Humanos , Ratones , Estructura Molecular , Células 3T3 NIH , Polímeros/síntesis química , Receptor ErbB-2/biosíntesis , Distribución Tisular , Trastuzumab , Células Tumorales Cultivadas
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120139, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34245971

RESUMEN

A new efficient Schiff base sensor SB3 for fluorescent and colorimetric "naked-eye" "turn-on" sensing of cyanide anion (CN-) with excellent sensitivity and selectivity was developed. The 4,4'-(perfluoropropane-2,2-diyl)bisphenol group and two phenyl groups were covalently linked by two C = N bonds to extend the conjugation length. The four hydroxyl groups can improve the water solubility of the SB3 sensor. The SB3 sensor exhibited high specificity towards CN- by interrupting its intramolecular charge transfer, resulting in a color change and remarkable "turn-on" green fluorescence emission. The sensing mechanism is caused by the nucleophilic addition of CN- toward imine groups of the SB3 sensor, leading to breaks of the conjugation, fluorescent spectral changes, and color change. It was confirmed by 1H NMR titration and Mass spectra. The detection limits for CN- and Al3+obtained by fluorescence spectrum are 0.80 µM and 0.25 µM, respectively. The SB3 sensor can act as an efficient chemical sensor for detecting the CN- and Al3+ ions under common environmental and physiological conditions (pH 5-12). Besides, the sensor can also detect CN- in food materials (such as sprouting potatoes and cassava flour) and imaging CN-in living cells with strong "turn-on" fluorescence at 490 nm. SB3 is an excellent CN- sensor that exhibits some advantages, including easy synthesis, distinct fluorescence and color change, high selectivity, low detection limit, and good anti-interference ability to analyze solution and food samples, together with fluorescence cell imaging.


Asunto(s)
Colorimetría , Cianuros , Aluminio , Colorantes Fluorescentes , Bases de Schiff , Espectrometría de Fluorescencia
20.
Free Radic Biol Med ; 173: 151-169, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34314818

RESUMEN

3-O-ethyl ascorbic acid (EAA) is an ether-derivative of ascorbic acid, known to inhibit tyrosinase activity, and is widely used in skincare formulations. Nevertheless, the molecular mechanisms underlying the EAA's effects are poorly understood. Here, the anti-melanogenic activity of EAA was demonstrated through Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes (HaCaT) and autophagy induction and inhibition of α-MSH-stimulated melanogenesis in melanocytes (B16F10). EAA pretreatment increased the HaCaT cell viability but suppressed ROS-mediated p53/POMC/α-MSH pathways in UVA-irradiated cells. Further, the conditioned medium from EAA-pretreated and UVA-irradiated HaCaT cells suppressed the MITF-CREB-tyrosinase pathways leading to the inhibition of melanin synthesis in B16F10 cells. EAA treatment increased nuclear Nrf2 translocation via the p38, PKC, and ROS pathways leading to HO-1, γ-GCLC, and NQO-1 antioxidant expression in HaCaT cells. However, Nrf2 silencing reduced the EAA-mediated anti-melanogenic activity, evidenced by impaired antioxidant gene expression and uncontrolled ROS (H202) generation following UVA irradiation. In B16F10 cells, EAA-induced autophagy was shown by enhanced LC3-II levels, AVO formation, Beclin-1 upregulation, and activation of p62/SQSTM1. Further, EAA-induced anti-melanogenic activity was substantially decreased in autophagy inhibitor (3-MA) pretreated or LC3 knockdown B16F10 cells. Notably, transmission electron microscopy data showed increased melanosome-engulfing autophagosomes in EAA-treated B16F10 cells. Moreover, EAA also down-regulated MC1R, TRP-1/-2, tyrosinase expressions, and melanin synthesis by suppressing the cAMP-CREB-mediated MITF expression in B16F10 cells stimulated with α-MSH. In vivo studies on the zebrafish model further confirmed that EAA inhibited tyrosinase expression/activity and endogenous pigmentation. In conclusion, 3-O-ethyl ascorbic acid is an effective skin-whitening agent and could be used as a topical agent for cosmetic purposes.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Ácido Ascórbico , Autofagia , Línea Celular Tumoral , Queratinocitos , Melanocitos , Melanoma Experimental/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/genética , Pez Cebra , alfa-MSH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA