RESUMEN
The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin, and the 27-residue synthetic peptides (DDDS)(6)DDD and (DDDG)(6)DDD (D = aspartic acid, S = serine, and G = glycine) was investigated via in situ atomic force microscopy. The results show that these four growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition of or an increase in the step speeds (with respect to the impurity-free system), depending on a range of factors that include peptide or protein concentration, supersaturation, and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we propose a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at the crystal surface.