Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 20(20): 5994-6009, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24687589

RESUMEN

Investigations on the Staudinger reaction between 1,8-diazidonaphthalene and phosphorous(III) building blocks, a key step in the synthesis of superbasic bisphosphazene proton sponges, yielded a set of bisphosphazides with a constrained geometry 1,8-disubstituted naphthalene backbone. This compound class has attracted our interest not only due to their surprisingly high stability, but in particular because of their theoretically predicted basicity in the range of their bisphosphazene analogues that can be referred to the constrained geometry interaction of two highly basic nitrogen atoms. Eleven new bisphosphazides bearing simple P-amino groups as well as P-guanidino substituents, azaphosphatrane moieties, P2 building blocks, or chiral P-amino substituents derived from L-proline are presented. They were studied concerning their spectroscopic properties and partly also their chromophoric and structural features. In the case of the pyrrolidino-substituted TPPN(2N2) (TPPN = 1,8-bis(trispyrrolidinophosphazenyl)naphthalene), the stepwise nitrogen elimination is investigated theoretically and experimentally, which led to the isolation and structural characterization of TPPN(1N2) bearing a phosphazide and a phosphazene functionality in one molecule. Attempts to protonate the obtained bisphosphazides and to prove the computationally predicted pKBH(+) values through NMR titration reactions resulted in their decay, which again was rationalized by theoretical calculations. Altogether we present the so far most extensive spectroscopic, structural and theoretical investigation of constrained geometry bisphosphazides and their Brønsted and Lewis basic properties.

2.
Org Lett ; 18(3): 548-51, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26771707

RESUMEN

The transposition of a homoallyl pinacol boronic ester was realized by a highly reactive nickel-catalyst system comprising NiCl2(dppp), zinc powder, ZnI2, and Ph2PH. The in situ generated Z-crotyl pinacol boronic esters were reacted with various aldehydes to form syn-homoallylic alcohols in high diastereoselectivities. The present nickel-catalyzed reaction is complementary to the iridium-catalyzed transposition reported by Murakami leading to the corresponding anti-homoallylic alcohols. Also, the multiple transposition of pentenyl pinacol boronic ester was realized.


Asunto(s)
Ácidos Borónicos/química , Níquel/química , Alcoholes/química , Aldehídos/química , Ácidos Borónicos/síntesis química , Catálisis , Técnicas Químicas Combinatorias , Ésteres/química , Iridio/química , Estructura Molecular , Estereoisomerismo , Zinc/química
3.
Org Lett ; 17(12): 2952-5, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26023712

RESUMEN

A highly reactive nickel catalyst comprising NiCl2(dppp) or NiCl2(dppe) with zinc powder, ZnI2 and Ph2PH, was applied in the isomerization of terminal alkenes to Z-2-alkenes. The double-bond geometry of the 2-alkene can be controlled via the reaction temperature to yield the 2-Z-alkenes in excellent yields and high Z-selectivities. The formation of other constitutional isomers, such as 3-alkenes, is suppressed on the basis of the proposed mechanism via a 1,2-hydride shift from the metal to the Ph2P ligand. The nickel-catalyzed isomerization reaction was then applied in the synthesis of (9Z,12Z)-tetradeca-9,12-dienyl acetate, a pheromone with a 2Z,5Z-diene subunit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA