Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Infect Dis ; 76(3): e540-e543, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35686436

RESUMEN

We enrolled arriving international air travelers in a severe acute respiratory syndrome coronavirus 2 genomic surveillance program. We used molecular testing of pooled nasal swabs and sequenced positive samples for sublineage. Traveler-based surveillance provided early-warning variant detection, reporting the first US Omicron BA.2 and BA.3 in North America.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aeropuertos , COVID-19/diagnóstico , Genómica
2.
BMC Genomics ; 14: 374, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23731888

RESUMEN

BACKGROUND: The Drosophila GAGA factor (GAF) participates in nucleosome remodeling to activate genes, acts as an antirepressor and is associated with heterochromatin, contributing to gene repression. GAF functions are intimately associated to chromatin-based epigenetic control, linking basic transcriptional regulation to heritable long-term maintenance of gene expression. These diverse functions require GAF to interact with different partners in different multiprotein complexes. The two isoforms of GAF depict highly conserved glutamine-rich C-terminal domains (Q domain), which have been implicated in complex formation. RESULTS: Here we show that the Q domains exhibit prion-like properties. In an established yeast test system the two GAF Q domains convey prion activities comparable to well known yeast prions. The Q domains stably maintain two distinct conformational states imposing functional constraints on the fused yeast reporter protein. The prion-like phenotype can be reversibly cured in the presence of guanidine HCl or by over-expression of the Hsp104 chaperone protein. Additionally, when fused to GFP, the Q domains form aggregates in yeast cells. CONCLUSION: We conclude that prion-like behavior of the GAF Q domain suggests that this C-terminal structure may perform stable conformational switches. Such a self-perpetuating change in the conformation could assist GAF executing its diverse epigenetic functions of gene control in Drosophila.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos , Priones/química , Priones/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Datos de Secuencia Molecular , Fenotipo , Estructura Terciaria de Proteína , Factores de Transcripción/genética
3.
Mol Cell Biol ; 26(2): 617-29, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16382152

RESUMEN

Self-perpetuating protein aggregates transmit prion diseases in mammals and heritable traits in yeast. De novo prion formation can be induced by transient overproduction of the corresponding prion-forming protein or its prion domain. Here, we demonstrate that the yeast prion protein Sup35 interacts with various proteins of the actin cortical cytoskeleton that are involved in endocytosis. Sup35-derived aggregates, generated in the process of prion induction, are associated with the components of the endocytic/vacuolar pathway. Mutational alterations of the cortical actin cytoskeleton decrease aggregation of overproduced Sup35 and de novo prion induction and increase prion-related toxicity in yeast. Deletion of the gene coding for the actin assembly protein Sla2 is lethal in cells containing the prion isoforms of both Sup35 and Rnq1 proteins simultaneously. Our data are consistent with a model in which cytoskeletal structures provide a scaffold for generation of large aggregates, resembling mammalian aggresomes. These aggregates promote prion formation. Moreover, it appears that the actin cytoskeleton also plays a certain role in counteracting the toxicity of the overproduced potentially aggregating proteins.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto , Endocitosis , Mutación , Factores de Terminación de Péptidos , Priones/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
ACS Chem Biol ; 13(2): 333-342, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28992411

RESUMEN

Programmable nuclease-based genome editing technologies, including the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system, are becoming an essential component of many applications ranging from agriculture to medicine. However, fundamental limitations currently prevent the widespread, safe, and practical use of genome editors, especially for human disease interventions. These limitations include off-target effects, a lack of control over editing activity, suboptimal DNA repair outcomes, insufficient target conversion, and inadequate delivery performance. This perspective focuses on the potential for biological chemistry to address these limitations such that newly developed genome editing technologies can enable the broadest range of potential future applications. Equally important will be the development of these powerful technologies within a relevant ethical framework that emphasizes safety and responsible innovation.


Asunto(s)
Biología/métodos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma , Animales , Biología/ética , Proteínas Asociadas a CRISPR/metabolismo , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Endonucleasas/metabolismo , Edición Génica/ética , Técnicas de Transferencia de Gen , Humanos , ARN Guía de Kinetoplastida/genética
5.
Genetics ; 169(3): 1227-42, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15545639

RESUMEN

[PSI(+)] is a prion isoform of the yeast release factor Sup35. In some assays, the cytosolic chaperones Ssa1 and Ssb1/2 of the Hsp70 family were previously shown to exhibit "pro-[PSI(+)]" and "anti-[PSI(+)]" effects, respectively. Here, it is demonstrated for the first time that excess Ssa1 increases de novo formation of [PSI(+)] and that pro-[PSI(+)] effects of Ssa1 are shared by all other Ssa proteins. Experiments with chimeric constructs show that the peptide-binding domain is a major determinant of differences in the effects of Ssa and Ssb proteins on [PSI(+)]. Surprisingly, overproduction of either chaperone increases loss of [PSI(+)] when Sup35 is simultaneously overproduced. Excess Ssa increases both the average size of prion polymers and the proportion of monomeric Sup35 protein. Both in vivo and in vitro experiments uncover direct physical interactions between Sup35 and Hsp70 proteins. The proposed model postulates that Ssa stimulates prion formation and polymer growth by stabilizing misfolded proteins, which serve as substrates for prion conversion. In the case of very large prion aggregates, further increase in size may lead to the loss of prion activity. In contrast, Ssb either stimulates refolding into nonprion conformation or targets misfolded proteins for degradation, in this way counteracting prion formation and propagation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Priones/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica , Genotipo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Terminación de Péptidos , Plásmidos , Priones/metabolismo
6.
J Alzheimers Dis ; 34(4): 957-67, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23321523

RESUMEN

Accumulation of amyloid-ß (Aß) cascade aggregates is considered a hallmark of Alzheimer's disease (AD). Current dogma holds that the appearance of Aß oligomers and larger aggregates occur many years prior to plaque formation associated with the advanced and irreparable neurocognitive decline characteristic of AD. This premise is the impetus to identify these Aß precursor structures prior to advanced plaque development. The Pronucleon™ technology platform is comprised of a novel series of engineered peptides that provide a unique readout when associated with beta-rich fiber and oligomeric Aß. This technology has been applied to Ex Vivo tissue sections and In Vivo mouse models of AD to determine the potential utility of these synthetic peptides as potential imaging agents. In Ex Vivo studies, the Pronucleon™ peptide binds plaque like structures in brain sections obtained from transgenic mice overexpressing hAPP with both the human Swedish and London Aß mutations. In Vivo, Pronucleon™ peptide administered peripherally can localize to the brain and label plaques throughout the brain in transgenic mice. Taken together, the data suggest that Pronucleon™ could provide a new imaging tool for Aß cascade elements that precede advanced plaque and fibril formation, thereby advancing early diagnosis and treatment opportunities.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Péptidos/administración & dosificación , Péptidos/metabolismo , Análisis de Secuencia de Proteína
7.
PLoS One ; 5(3): e9929, 2010 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-20360952

RESUMEN

The metacaspase Mca1 from Saccharomyces cerevisiae displays a Q/N-rich region at its N-terminus reminiscent of yeast prion proteins. In this study, we show that the ability of Mca1 to form insoluble aggregates is modulated by a peptide stretch preceding its putative prion-forming domain. Based on its genomic locus, three potential translational start sites of Mca1 can give rise to two slightly different long Mca1 proteins or a short version, Mca1(451/453) and Mca1(432,) respectively, although under normal physiological conditions Mca1(432) is the predominant form expressed. All Mca1 variants exhibit the Q/N-rich regions, while only the long variants Mca1(451/453) share an extra stretch of 19 amino acids at their N-terminal end. Strikingly, only long versions of Mca1 but not Mca1(432) revealed pronounced aggregation in vivo and displayed prion-like properties when fused to the C-terminal domain of Sup35 suggesting that the N-terminal peptide element promotes the conformational switch of Mca1 protein into an insoluble state. Transfer of the 19 N-terminal amino acid stretch of Mca1(451) to the N-terminus of firefly luciferase resulted in increased aggregation of luciferase, suggesting a protein destabilizing function of the peptide element. We conclude that the aggregation propensity of the potential yeast prion protein Mca1 in vivo is strongly accelerated by a short peptide segment preceding its Q/N-rich region and we speculate that such a conformational switch might occur in vivo via the usage of alternative translational start sites.


Asunto(s)
Caspasas/química , Priones/química , Proteínas de Saccharomyces cerevisiae/química , Alelos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Fluorescentes Verdes/química , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Factores de Terminación de Péptidos/química , Fenotipo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie
8.
PLoS One ; 3(3): e1763, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18335038

RESUMEN

The cytosolic chaperone network of Saccharomyces cerevisiae is intimately associated with the emergence and maintenance of prion traits. Recently, the Hsp110 protein, Sse1, has been identified as a nucleotide exchange factor (NEF) for both cytosolic Hsp70 chaperone family members, Ssa1 and Ssb1. We have investigated the role of Sse1 in the de novo formation and propagation of [PSI(+)], the prion form of the translation termination factor, Sup35. As observed by others, we find that Sse1 is essential for efficient prion propagation. Our results suggest that the NEF activity is required for maintaining sufficient levels of substrate-free Ssa1. However, Sse1 exhibits an additional NEF-independent activity; it stimulates in vitro nucleation of Sup35NM, the prion domain of Sup35. We also observe that high levels of Sse1, but not of an unrelated NEF, very potently inhibit Hsp104-mediated curing of [PSI(+)]. Taken together, these results suggest a chaperone-like activity of Sse1 that assists in stabilization of early folding intermediates of the Sup35 prion conformation. This activity is not essential for prion formation under conditions of Sup35 overproduction, however, it may be relevant for spontaneous [PSI(+)] formation as well as for protection of the prion trait upon physiological Hsp104 induction.


Asunto(s)
Proteínas del Choque Térmico HSP110/fisiología , Priones , Saccharomyces cerevisiae/fisiología , Plásmidos , Biosíntesis de Proteínas
9.
J Biol Chem ; 281(5): 2847-57, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16316984

RESUMEN

In eukaryotes, newly synthesized proteins interact co-translationally with a multitude of different ribosome-bound factors and chaperones including the conserved heterodimeric nascent polypeptide-associated complex (NAC) and a Hsp40/70-based chaperone system. These factors are thought to play an important role in protein folding and targeting, yet their specific ribosomal localizations, which are prerequisite for their functions, remain elusive. This study describes the ribosomal localization of NAC and the molecular details by which NAC is able to contact the ribosome and gain access to nascent polypeptides. We identified a conserved RRK(X)nKK ribosome binding motif within the beta-subunit of NAC that is essential for the entire NAC complex to attach to ribosomes and allow for its interaction with nascent polypeptide chains. The motif localizes within a potential loop region between two predicted alpha-helices in the N terminus of betaNAC. This N-terminal betaNAC ribosome-binding domain was completely portable and sufficient to target an otherwise cytosolic protein to the ribosome. NAC modified with a UV-activatable cross-linker within its ribosome binding motif specifically cross-linked to L23 ribosomal protein family members at the exit site of the ribosome, providing the first evidence of NAC-L23 interaction in the context of the ribosome. Mutations of L23 reduced NAC ribosome binding in vivo and in vitro, whereas other eukaryotic ribosome-associated factors such as the Hsp70/40 chaperones Ssb or Zuotin were unaffected. We conclude that NAC employs a conserved ribosome binding domain to position itself on the L23 ribosomal protein adjacent to the nascent polypeptide exit site.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Transactivadores/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Secuencia Conservada , Proteínas de Unión al ADN , Proteínas de Escherichia coli/genética , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Mutación , Isomerasa de Peptidilprolil , Proteínas Ribosómicas/genética , Ribosomas/metabolismo
10.
Mol Microbiol ; 57(2): 357-65, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15978070

RESUMEN

Ribosome-tethered chaperones that interact with nascent polypeptide chains have been identified in both prokaryotic and eukaryotic systems. However, these ribosome-associated chaperones share no sequence similarity: bacterial trigger factors (TF) form an independent protein family while the yeast machinery is Hsp70-based. The absence of any component of the yeast machinery results in slow growth at low temperatures and sensitivity to aminoglycoside protein synthesis inhibitors. After establishing that yeast ribosomal protein Rpl25 is able to recruit TF to ribosomes when expressed in place of its Escherichia coli homologue L23, the ribosomal TF tether, we tested whether such divergent ribosome-associated chaperones are functionally interchangeable. E. coli TF was expressed in yeast cells that lacked the endogenous ribosome-bound machinery. TF associated with yeast ribosomes, cross-linked to yeast nascent polypeptides and partially complemented the aminoglycoside sensitivity, demonstrating that ribosome-associated chaperones from divergent organisms share common functions, despite their lack of sequence similarity.


Asunto(s)
Escherichia coli/fisiología , Chaperonas Moleculares/fisiología , Pliegue de Proteína , Ribosomas/fisiología , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Evolución Molecular , Prueba de Complementación Genética , Proteínas HSP70 de Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Isomerasa de Peptidilprolil/metabolismo , Isomerasa de Peptidilprolil/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA