Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(6): 2982-3000, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31970415

RESUMEN

Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Sirtuinas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Modelos Biológicos , Unión Proteica , Dominios Proteicos
2.
FASEB J ; 29(10): 4313-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116705

RESUMEN

ß-Catenin, which is a key mediator of the wingless-integration site (Wnt)/ß-catenin signaling pathway, plays an important role in cell proliferation, cell fate determination, and tumorigenesis, by regulating the expression of a wide range of target genes. Although a variety of posttranslational modifications are involved in ß-catenin activity, the role of lysine methylation in ß-catenin activity is largely unknown. In this study, su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing protein 7 (SET7/9), a lysine methyltransferase, interacted with and methylated ß-catenin, as demonstrated both in vitro and in vivo. The interaction and methylation were significantly enhanced in response to H2O2 stimulation. A mutagenesis assay and mass spectrometric analyses revealed that ß-catenin was monomethylated by SET7/9 at lysine residue 180. Methylated ß-catenin was easily recognized by phosphokinase glycogen synthase kinase (GSK)-3ß for degradation. Consistent with this finding, the mutated ß-catenin (K180R) that cannot be methylated exhibited a longer half-life than did the methylated ß-catenin. The consequent depletion of SET7/9 by shRNA or the mutation of the ß-catenin (K180R) significantly enhanced the expression of Wnt/ß-catenin target genes such as c-myc and cyclin D1 and promoted the growth of cancer cells. Together, these results provide a novel mechanism by which Wnt/ß-catenin signaling is regulated in response to oxidative stress.


Asunto(s)
Proliferación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Berberina/farmacología , Western Blotting , Ciclina D1/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HCT116 , Células HEK293 , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Peróxido de Hidrógeno/farmacología , Metilación/efectos de los fármacos , Mutación , Oxidantes/farmacología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , beta Catenina/genética
3.
Proc Natl Acad Sci U S A ; 110(14): 5516-21, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509280

RESUMEN

Suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, catalyzes histone 3 lysine 9 trimethylation and is involved in heterochromatin organization and genome stability. However, the mechanism for regulation of the enzymatic activity of SUV39H1 in cancer cells is not yet well known. In this study, we identified SET domain-containing protein 7 (SET7/9), a protein methyltransferase, as a unique regulator of SUV39H1 activity. In response to treatment with adriamycin, a DNA damage inducer, SET7/9 interacted with SUV39H1 in vivo, and a GST pull-down assay confirmed that the chromodomain-containing region of SUV39H1 bound to SET7/9. Western blot using antibodies specific for antimethylated SUV39H1 and mass spectrometry demonstrated that SUV39H1 was specifically methylated at lysines 105 and 123 by SET7/9. Although the half-life and localization of methylated SUV39H1 were not noticeably changed, the methyltransferase activity of SUV39H1 was dramatically down-regulated when SUV39H1 was methylated by SET7/9. Consequently, H3K9 trimethylation in the heterochromatin decreased significantly, which, in turn, led to a significant increase in the expression of satellite 2 (Sat2) and α-satellite (α-Sat), indicators of heterochromatin relaxation. Furthermore, a micrococcal nuclease sensitivity assay and an immunofluorescence assay demonstrated that methylation of SUV39H1 facilitated genome instability and ultimately inhibited cell proliferation. Together, our data reveal a unique interplay between SET7/9 and SUV39H1--two histone methyltransferases--that results in heterochromatin relaxation and genome instability in response to DNA damage in cancer cells.


Asunto(s)
Metilación de ADN/genética , Inestabilidad Genómica/fisiología , Heterocromatina/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Hibridación Fluorescente in Situ , Luciferasas , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Autophagy ; 11(12): 2309-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26735435

RESUMEN

Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the autophagy regulation machinery has been widely studied, the key epigenetic control of autophagy process still remains unknown. Here we report that the methyltransferase EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) epigenetically represses several negative regulators of the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) pathway, such as TSC2, RHOA, DEPTOR, FKBP11, RGS16 and GPI. EZH2 was recruited to these genes promoters via MTA2 (metastasis associated 1 family, member 2), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA2 was identified as a new chromatin binding protein whose association with chromatin facilitated the subsequent recruitment of EZH2 to silenced targeted genes, especially TSC2. Downregulation of TSC2 (tuberous sclerosis 2) by EZH2 elicited MTOR activation, which in turn modulated subsequent MTOR pathway-related events, including inhibition of autophagy. In human colorectal carcinoma (CRC) tissues, the expression of MTA2 and EZH2 correlated negatively with expression of TSC2, which reveals a novel link among epigenetic regulation, the MTOR pathway, autophagy induction, and tumorigenesis.


Asunto(s)
Autofagia/genética , Epigénesis Genética/genética , Complejo Represivo Polycomb 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2 , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos
5.
Cell Res ; 23(4): 491-507, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23277279

RESUMEN

Autophagy is activated to maintain cellular energy homeostasis in response to nutrient starvation. However, autophagy is not persistently activated, which is poorly understood at a mechanistic level. Here, we report that turnover of FoxO1 is involved in the dynamic autophagic process caused by glutamine starvation. X-box-binding protein-1u (XBP-1u) has a critical role in FoxO1 degradation by recruiting FoxO1 to the 20S proteasome. In addition, the phosphorylation of XBP-1u by extracellular regulated protein kinases1/2 (ERK1/2) on Ser61 and Ser176 was found to be critical for the increased interaction between XBP-1u and FoxO1 upon glutamine starvation. Furthermore, knockdown of XBP-1u caused the sustained level of FoxO1 and the persistent activation of autophagy, leading to a significant decrease in cell viability. Finally, the inverse correlation between XBP-1u and FoxO1 expression agrees well with the expression profiles observed in many human cancer tissues. Thus, our findings link the dynamic process of autophagy to XBP-1u-induced FoxO1 degradation.


Asunto(s)
Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Glutamina/deficiencia , Factores de Transcripción/genética , Autofagia , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Unión al ADN/deficiencia , Escherichia coli/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Humanos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Proteolisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Factores de Transcripción/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA