Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 35(2): 717-737, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472157

RESUMEN

Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.


Asunto(s)
Inflorescencia , Zea mays , Inflorescencia/genética , Inflorescencia/metabolismo , Zea mays/metabolismo , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell ; 34(7): 2688-2707, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35435234

RESUMEN

Cambial development in the stems of perennial woody species is rigorously regulated by phytohormones. Auxin and gibberellin (GA) play crucial roles in stimulating cambial activity in poplar (Populus spp.). In this study, we show that the DELLA protein REPRESSOR of ga1-3 Like 1 (RGL1), AUXIN RESPONSE FACTOR 7 (ARF7), and Aux/INDOLE-3-ACETIC ACID 9 (IAA9) form a ternary complex that mediates crosstalk between the auxin and GA signaling pathways in poplar stems during cambial development. Biochemical analysis revealed that ARF7 physically interacts with RGL1 and IAA9 through distinct domains. The arf7 loss-of-function mutant showed markedly attenuated responses to auxin and GA, whereas transgenic poplar plants overexpressing ARF7 displayed strongly improved cambial activity. ARF7 directly binds to the promoter region of the cambial stem cell regulator WOX4 to modulate its expression, thus integrating auxin and GA signaling to regulate cambial activity. Furthermore, the direct activation of PIN-FORMED 1 expression by ARF7 in the RGL1-ARF7-IAA9 module increased GA-dependent cambial activity via polar auxin transport. Collectively, these findings reveal that the crosstalk between auxin and GA signaling mediated by the RGL1-ARF7-IAA9 module is crucial for the precise regulation of cambial development in poplar.


Asunto(s)
Proteínas de Arabidopsis , Populus , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
3.
New Phytol ; 241(4): 1646-1661, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115785

RESUMEN

Perennial trees in boreal and temperate regions undergo growth cessation and bud set under short photoperiods, which are regulated by phytochrome B (phyB) photoreceptors and PHYTOCHROME INTERACTING FACTOR 8 (PIF8) proteins. However, the direct signaling components downstream of the phyB-PIF8 module remain unclear. We found that short photoperiods suppressed the expression of miR156, while upregulated the expression of miR156-targeted SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE 16 (SPL16) and SPL23 in leaves and shoot apices of Populus trees. Accordingly, either overexpression of MIR156a/c or mutagenesis of SPL16/23 resulted in the attenuation of growth cessation and bud set under short days (SD), whereas overexpression of SPL16 and SPL23 conferred early growth cessation. We further showed that SPL16 and SPL23 directly suppressed FLOWERING LOCUS T2 (FT2) expression while promoted BRANCHED1 (BRC1.1 and BRC1.2) expression. Moreover, we revealed that PIF8.1/8.2, positive regulators of growth cessation, directly bound to promoters of MIR156a and MIR156c and inhibited their expression to modulate downstream pathways. Our results reveal a connection between the phyB-PIF8 module-mediated photoperiod perception and the miR156-SPL16/23-FT2/BRC1 regulatory cascades in SD-induced growth cessation. Our study provides insights into the rewiring of a conserved miR156-SPL module in the regulation of seasonal growth in Populus trees.


Asunto(s)
Fitocromo , Populus , Fotoperiodo , Árboles , Proteínas de Plantas/metabolismo , Estaciones del Año , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell Environ ; 47(6): 2058-2073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38404129

RESUMEN

Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fitocromo , Proteínas de Plantas , Populus , Populus/genética , Populus/efectos de la radiación , Populus/metabolismo , Populus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/genética , Luz , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente , Árboles/fisiología , Árboles/genética , Árboles/metabolismo
5.
New Phytol ; 240(5): 1848-1867, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691138

RESUMEN

Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.


Asunto(s)
Resistencia a la Sequía , Populus , Proteínas de Plantas/metabolismo , Sequías , Agua/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
6.
New Phytol ; 239(4): 1505-1520, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37306069

RESUMEN

Flowering time is a key agronomic trait determining environmental adaptation and yield potential of crops. The regulatory mechanisms of flowering in maize still remain rudimentary. In this study, we combine expressional, genetic, and molecular studies to identify two homologous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors ZmSPL13 and ZmSPL29 as positive regulators of juvenile-to-adult vegetative transition and floral transition in maize. We show that both ZmSPL13 and ZmSPL29 are preferentially expressed in leaf phloem, vegetative and reproductive meristem. We show that vegetative phase change and flowering time are moderately delayed in the Zmspl13 and Zmspl29 single knockout mutants and more significantly delayed in the Zmspl13/29 double mutants. Consistently, the ZmSPL29 overexpression plants display precocious vegetative phase transition and floral transition, thus early flowering. We demonstrate that ZmSPL13 and ZmSPL29 directly upregulate the expression of ZmMIR172C and ZCN8 in the leaf, and of ZMM3 and ZMM4 in the shoot apical meristem, to induce juvenile-to-adult vegetative transition and floral transition. These findings establish a consecutive signaling cascade of the maize aging pathway by linking the miR156-SPL and the miR172-Gl15 regulatory modules and provide new targets for genetic improvement of flowering time in maize cultivars.


Asunto(s)
Flores , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Flores/fisiología , Zea mays/genética , Zea mays/metabolismo , Hojas de la Planta/metabolismo , Meristema/genética , Meristema/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Cell ; 32(5): 1464-1478, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152179

RESUMEN

The circadian clock provides a time-keeping mechanism that synchronizes various biological activities with the surrounding environment. Arabidopsis (Arabidopsis thaliana) CIRCADIAN CLOCK ASSOCIATED1 (CCA1), encoding a MYB-related transcription factor, is a key component of the core oscillator of the circadian clock, with peak expression in the morning. The molecular mechanisms regulating the light induction and rhythmic expression of CCA1 remain elusive. In this study, we show that two phytochrome signaling proteins, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its paralog FAR-RED IMPAIRED RESPONSE1 (FAR1), are essential for the light-induced expression of CCA1 FHY3 and FAR1 directly bind to the CCA1 promoter and activate its expression, whereas PHYTOCHROME INTERACTING FACTOR5 (PIF5) directly binds to its promoter and represses its expression. Furthermore, PIF5 and TIMING OF CAB EXPRESSION1 physically interact with FHY3 and FAR1 to repress their transcriptional activation activity on CCA1 expression. These findings demonstrate that the photosensory-signaling pathway integrates with circadian oscillators to orchestrate clock gene expression. This mechanism might form the molecular basis of the regulation of the clock system by light in response to daily changes in the light environment, thus increasing plant fitness.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Factores de Transcripción/genética , Secuencia de Bases , Ritmo Circadiano/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Regiones Promotoras Genéticas , Unión Proteica/efectos de la radiación , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Activación Transcripcional/efectos de la radiación
8.
Plant Physiol ; 187(2): 947-962, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608948

RESUMEN

Strigolactones (SLs) are a recently identified class of phytohormones that regulate diverse developmental processes in land plants. However, the signaling mechanism of SLs in maize (Zea mays) remains largely unexplored. Here, we identified the maize gene DWARF 53 (ZmD53) and demonstrated that ZmD53 interacts with the SL receptors DWARF 14A/B (ZmD14A/B) in a rac-GR24-dependent manner. Transgenic maize plants expressing a gain-of-function mutant version of Zmd53 exhibited insensitivity to exogenous rac-GR24 treatment and a highly pleiotropic phenotype, including excess tillering and reduced tassel branching, indicating that ZmD53 functions as an authentic SL signaling repressor in maize. In addition, we showed that ZmD53 interacts with two homologous maize SPL transcription factors, UB3 and TSH4, and suppresses their transcriptional activation activity on TB1 to promote tillering. We also showed that UB2, UB3, and TSH4 can physically interact with each other and themselves, and that they can directly regulate the expression of TSH4, thus forming a positive feedback loop. Furthermore, we demonstrated that ZmD53 can repress the transcriptional activation activity of UB3 and TSH4 on their own promoters, thus decreasing tassel branch number. Our results reveal new insights into the integration of SL signaling and the miR156/SPL molecular module to coordinately regulate maize development.


Asunto(s)
Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Zea mays/genética , Flores/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
9.
Plant Cell ; 31(9): 2089-2106, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31311834

RESUMEN

Increasing crop yield per unit of area can be achieved by increasing planting density. However, high-density planting could trigger shade avoidance responses, which cause exaggerated growth and increased susceptibility to various diseases. Previous studies have shown that the rapid elongation of plants under shade (i.e., reduced red to far-red ratios) is regulated by phytochromes and various phytohormones. However, the detailed molecular mechanisms governing the interaction among these signaling pathways are not well understood. Here, we report that loss-of-function mutants of FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), which encode two homologous transcription factors essential for phytochrome signaling, exhibit an exaggerated shade avoidance phenotype. We show that FHY3 and FAR1 repress plant growth through directly activating the expression of two atypical basic helix-loop-helix transcriptional cofactors, PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2, and that this process is antagonized by a group of JASMONATE ZIM-DOMAIN proteins, key repressors of the jasmonic acid (JA) signaling pathway, through physical interactions. Furthermore, we show that FHY3 interacts with MYC2, a key transcriptional regulator of JA responses, coordinately regulating JA-responsive defense gene expression. Our results unveil a previously unrecognized mechanism whereby plants balance their growth and defense responses through convergence of the phytochrome signaling pathway and JA signaling pathway under shade conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo A/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Luz , Lipooxigenasas/metabolismo , Proteínas Nucleares/genética , Fenotipo , Fitocromo/metabolismo , Fitocromo A/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
10.
New Phytol ; 230(4): 1533-1549, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33626179

RESUMEN

The epidermal hair and stomata are two types of specialized structures on the surface of plant leaves. On mature maize leaves, stomatal complexes and three types of hairs are distributed in a stereotyped pattern on the adaxial epidermis. However, the spatiotemporal relationship between epidermal hair and stomata development and the regulatory mechanisms governing their formation in maize remain largely unknown. Here, we report that three homologous ZmSPL transcription factors, ZmSPL10, ZmSPL14 and ZmSPL26, act in concert to promote epidermal hair fate on maize leaf. Cytological analyses revealed that Zmspl10/14/26 triple mutants are completely glabrous, but possess ectopic stomatal files. Strikingly, the precursor cells for prickle and bicellular hairs are transdifferentiated into ectopic stomatal complexes in the Zmspl10/14/26 mutants. Molecular analyses demonstrated that ZmSPL10/14/26 bind directly to the promoter of a WUSCHEL-related homeobox gene, ZmWOX3A, and upregulate its expression in the hair precursor cells. Moreover, several auxin-related genes are downregulated in the Zmspl10/14/26 triple mutants. Our results suggest that ZmSPL10/14/26 play a key role in promoting epidermal hair fate on maize leaves, possibly through regulating ZmWOX3A and auxin-related gene expression, and that the fates of epidermal hairs and stomata are switchable.


Asunto(s)
Hojas de la Planta , Zea mays , Diferenciación Celular , Epidermis , Factores de Transcripción/genética , Zea mays/genética
11.
J Exp Bot ; 72(7): 2356-2370, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33512461

RESUMEN

Phytohormones play important roles in regulating various aspects of plant growth and development as well as in biotic and abiotic stress responses. Stomata are openings on the surface of land plants that control gas exchange with the environment. Accumulating evidence shows that various phytohormones, including abscisic acid, jasmonic acid, brassinosteroids, auxin, cytokinin, ethylene, and gibberellic acid, play many roles in the regulation of stomatal development and patterning, and that the cotyledons/leaves and hypocotyls/stems of Arabidopsis exhibit differential responsiveness to phytohormones. In this review, we first discuss the shared regulatory mechanisms controlling stomatal development and patterning in Arabidopsis cotyledons and hypocotyls and those that are distinct. We then summarize current knowledge of how distinct hormonal signaling circuits are integrated into the core stomatal development pathways and how different phytohormones crosstalk to tailor stomatal density and spacing patterns. Knowledge obtained from Arabidopsis may pave the way for future research to elucidate the effects of phytohormones in regulating stomatal development and patterning in cereal grasses for the purpose of increasing crop adaptive responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Reguladores del Crecimiento de las Plantas/fisiología , Estomas de Plantas/fisiología , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Citocininas , Regulación de la Expresión Génica de las Plantas
12.
Plant Biotechnol J ; 18(12): 2520-2532, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32531863

RESUMEN

Maize is a major staple crop widely used for food, feedstocks and industrial products. Shade-avoidance syndrome (SAS), which is triggered when plants sense competition of light from neighbouring vegetation, is detrimental for maize yield production under high-density planting conditions. Previous studies have shown that the red and far-red photoreceptor phytochromes are responsible for perceiving the shading signals and triggering SAS in Arabidopsis; however, their roles in maize are less clear. In this study, we examined the expression patterns of ZmPHYC1 and ZmPHYC2 and found that ZmPHYC1, but not ZmPHYC2, is highly expressed in leaves and is regulated by the circadian clock. Both ZmPHYC1 and ZmPHYC2 proteins are localized to both the nucleus and cytoplasm under light conditions and both of them can interact with themselves or with ZmPHYBs. Heterologous expression of ZmPHYCs can complement the Arabidopsis phyC-2 mutant under constant red light conditions and confer an attenuated SAS in Arabidopsis in response to shading. Double knockout mutants of ZmPHYC1 and ZmPHYC2 created using the CRISPR/Cas9 technology display a moderate early-flowering phenotype under long-day conditions, whereas ZmPHYC2 overexpression plants exhibit a moderately reduced plant height and ear height. Together, these results provided new insight into the function of ZmPHYCs and guidance for breeding high-density tolerant maize cultivars.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/metabolismo , Zea mays/genética , Zea mays/metabolismo
13.
J Exp Bot ; 69(20): 4675-4688, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29992284

RESUMEN

Maize (Zea mays ssp. mays) is an agronomically important crop and also a classical genetic model for studying the regulation of plant architecture formation, which is a critical determinant of grain yield. Since the 1930s, increasing planting density has been a major contributing factor to the >7-fold increase in maize grain yield per unit land area in the USA, which is accompanied by breeding and utilization of cultivars characterized by high-density-tolerant plant architecture, including decreased ear height, lodging resistance, more upright leaves, reduced tassel branch number, and reduced anthesis-silking interval (ASI). Recent studies demonstrated that phytochrome-mediated red/far-red light signaling pathway and the miR156/SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) regulatory module co-ordinately regulate the shade avoidance response and diverse aspects of plant architecture in responding to shading in Arabidopsis. The maize genome contains 30 ZmSPL genes, and 18 of them are predicted as direct targets of zma-miR156s. Accumulating evidence indicates that ZmSPL genes play important roles in regulating maize flowering time, plant/ear height, tilling, leaf angle, tassel and ear architecture, and grain size and shape. Finally, we discuss ways to exploit maize SPL genes and downstream targets for improving maize plant architecture tailored for high-density planting.


Asunto(s)
Producción de Cultivos , Grano Comestible/anatomía & histología , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética , Zea mays/genética , Grano Comestible/genética , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Zea mays/anatomía & histología , Zea mays/metabolismo
14.
New Phytol ; 215(1): 281-298, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28452060

RESUMEN

In Cichorium intybus, inulin metabolism is mediated by fructan-active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), and fructan 1-exohydrolases 1, 2a and 2b (1-FEH1, -2a and -2b), respectively. While these enzymes have been rigorously characterized, the transcriptional network orchestrating their development- and stress-related expression has remained largely unknown. Here, the possible role of R2R3-MYB transcription factors in FAZY regulation was explored via bioinformatic identification of R2R3-MYBs (using an RNA sequencing (RNAseq) database), studies of co-expression of these factors with target genes, in vivo transient transactivation assays of FAZY target promoters (dual luciferase assay), and a yeast one-hybrid assay investigating the specificity of the binding of these factors to cis-elements. The chicory MYB transcription factor CiMYB17 specifically activated promoters of 1-SST and 1-FFT by binding to the consensus DNA-motif DTTHGGT. Unexpectedly, CiMYB17 also activated promoters of fructan exohydrolase genes. The stimulatory effect on promoter activities of sucrose transporter and cell wall invertase genes points to a general role in regulating the source-sink relationship. Co-induction of CiMYB17 with 1-SST and 1-FFT (and, less consistently, with 1-FEH1/2) in nitrogen-starved or abscisic acid (ABA)-treated chicory seedlings and in salt-stressed chicory hairy roots supports a role in stress-induced fructan metabolism, including de novo fructan synthesis and trimming of pre-existing fructans, whereas the reduced expression of CiMYB17 in developing taproots excludes a role in fructan accumulation under normal growth conditions.


Asunto(s)
Cichorium intybus/genética , Fructanos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Cichorium intybus/metabolismo , Fructanos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Exp Bot ; 68(15): 4323-4338, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28922763

RESUMEN

In the biennial Cichorium intybus, inulin-type fructans accumulate in the taproot during the first year. Upon cold or drought exposure, fructans are degraded by fructan exohydrolases, affecting inulin yield and degree of polymerization. While stress-induced expression of 1-FEH genes has been thoroughly explored, the transcriptional network mediating these responses has remained unknown. In this study, several R2R3-MYB transcriptional regulators were analysed for their possible involvement in 1-FEH regulation via transient transactivation of 1-FEH target promoters and for in vivo co-expression with target genes under different stress and hormone treatments. CiMYB3 and CiMYB5 selectively enhanced promoter activities of 1-FEH1, 1-FEH2a, and 1-FEH2b genes, without affecting promoter activities of fructosyltransferase genes. Both factors recognized the MYB-core motifs (C/TNGTTA/G) that are abundantly present in 1-FEH promoters. In chicory hairy root cultures, CiMYB5 displayed co-expression with its target genes in response to different abiotic stress and phytohormone treatments, whereas correlations with CiMYB3 expression were less consistent. Oligofructan levels indicated that the metabolic response, while depending on the balance of the relative expression levels of fructan exohydrolases and fructosyltransferases, could be also affected by differential subcellular localization of different FEH isoforms. The results indicate that in chicory hairy root cultures CiMYB5 and CiMYB3 act as positive regulators of the fructan degradation pathway.


Asunto(s)
Cichorium intybus/genética , Fructanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Cichorium intybus/metabolismo , Redes y Vías Metabólicas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
16.
J Exp Bot ; 68(3): 469-482, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204559

RESUMEN

Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/fisiología , Proteínas de Plantas/genética , Semillas/fisiología , beta-Fructofuranosidasa/genética , Secuencia de Aminoácidos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Glycine max/genética , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo
17.
Bioorg Med Chem Lett ; 27(7): 1557-1560, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28256374

RESUMEN

A new class of endomorphin-1 analogues was synthesized by combining successful chemical modifications including N-terminal guanidino modification, Phe4 was chlorinated, D-Ala-Gly Substituted L-Pro2. Their bioactivities were measured by radioligand binding assay, metabolic stability and the tail-flick test. In radioligand binding assays, analogue GAGPC (Nα-Amidino-Tyr-D-Ala-Gly-Trp-p-Cl-Phe-NH2), shown a µ-opioid receptor affinity about 1.42-fold higher and a 2.51-fold higher δ-opioid receptor affinity than EM-1. In the metabolic stability assays, GAGPC had the longest half-lives which was 284min and 53-fold higher than that of EM-1. In the tail-flick test in mice, GAGPC chloride modification increases the lipid content of the drug, thus increases the permeability of the blood brain barrier, and has a higher analgesic activity. It might be of importance in potential application as drug candidates as analgesic.


Asunto(s)
Analgésicos Opioides/farmacología , Oligopéptidos/farmacología , Analgésicos Opioides/síntesis química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacocinética , Animales , Barrera Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Semivida , Masculino , Ratones , Naloxona/administración & dosificación , Naloxona/farmacología , Oligopéptidos/síntesis química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética , Ensayo de Unión Radioligante , Ratas Wistar , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
18.
Plant Mol Biol ; 90(1-2): 137-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26546341

RESUMEN

In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.


Asunto(s)
Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , beta-Fructofuranosidasa/antagonistas & inhibidores , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/enzimología , Expresión Génica , Genes Reporteros , Germinación , Mutación , Filogenia , Epidermis de la Planta/enzimología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Nicotiana/enzimología , Nicotiana/genética , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
19.
J Pineal Res ; 59(2): 255-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26122919

RESUMEN

Melatonin regulates growth in many plants; however, the mechanism remains unclear. In this study, exogenous melatonin feeding resulted in both promotional (≤10 µm) and inhibitory (≥100 µm) effects on maize seedling growth. Initial analyses suggested positive correlations between the amount of melatonin and sucrose synthesis and hydrolysis-related gene expression, enzyme activities, and sucrose metabolites. However, assays of photosynthetic rate, hexokinase (HxK) activity, expression of photosynthetic marker genes, and HxK-related genes showed opposite effects under 10 µm (positive) and 100 µm (negative) melatonin treatments. Similarly, 10 µm melatonin accelerated starch catabolism at night, whereas 100 µm melatonin significantly decreased this process and led to starch accumulation in photosynthetic tissues. Furthermore, expression analysis of genes related to sucrose phloem loading resulted in a slight upregulation of sucrose transporters (SUT1 and SUT2) when seedlings were induced with 10 µm melatonin, while treatment with 100 µm melatonin resulted in significant downregulation of these sucrose transporter genes (SUT1 and SUT2), as well as tie-dyed2 (Tdy2) and sucrose export defective 1. Taken together, these results suggest that low doses of melatonin benefit maize seedling growth by promoting sugar metabolism, photosynthesis, and sucrose phloem loading. Conversely, high doses of melatonin inhibit seedling growth by inducing the excessive accumulation of sucrose, hexose and starch, suppressing photosynthesis and sucrose phloem loading.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Melatonina/farmacología , Plantones/metabolismo , Sacarosa/metabolismo , Zea mays/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/biosíntesis
20.
J Clin Transl Hepatol ; 12(4): 389-405, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38638377

RESUMEN

Hepatocellular carcinoma (HCC) is a common cancer, and the body's immune responses greatly affect its progression and the prognosis of patients. Immunological suppression and the maintenance of self-tolerance in the tumor microenvironment are essential responses, and these form part of the theoretical foundations of immunotherapy. In this review, we first discuss the tumor microenvironment of HCC, describe immunosuppression in HCC, and review the major biomarkers used to track HCC progression and response to treatment. We then examine antibody-based therapies, with a focus on immune checkpoint inhibitors (ICIs), monoclonal antibodies that target key proteins in the immune response (programmed cell death protein 1, anti-cytotoxic T-lymphocyte associated protein 4, and programmed death-ligand 1) which have transformed the treatment of HCC and other cancers. ICIs may be used alone or in conjunction with various targeted therapies for patients with advanced HCC who are receiving first-line treatments or subsequent treatments. We also discuss the use of different cellular immunotherapies, including T cell receptor (TCR) T cell therapy and chimeric antigen receptor (CAR) T cell therapy. We then review the use of HCC vaccines, adjuvant immunotherapy, and oncolytic virotherapy, and describe the goals of future research in the development of treatments for HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA