Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hepatobiliary Pancreat Dis Int ; 21(4): 325-333, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34674948

RESUMEN

BACKGROUND: Macrovascular invasion (MaVI) occurs in nearly half of hepatocellular carcinoma (HCC) patients at diagnosis or during follow-up, which causes severe disease deterioration, and limits the possibility of surgical approaches. This study aimed to investigate whether computed tomography (CT)-based radiomics analysis could help predict development of MaVI in HCC. METHODS: A cohort of 226 patients diagnosed with HCC was enrolled from 5 hospitals with complete MaVI and prognosis follow-ups. CT-based radiomics signature was built via multi-strategy machine learning methods. Afterwards, MaVI-related clinical factors and radiomics signature were integrated to construct the final prediction model (CRIM, clinical-radiomics integrated model) via random forest modeling. Cox-regression analysis was used to select independent risk factors to predict the time of MaVI development. Kaplan-Meier analysis was conducted to stratify patients according to the time of MaVI development, progression-free survival (PFS), and overall survival (OS) based on the selected risk factors. RESULTS: The radiomics signature showed significant improvement for MaVI prediction compared with conventional clinical/radiological predictors (P < 0.001). CRIM could predict MaVI with satisfactory areas under the curve (AUC) of 0.986 and 0.979 in the training (n = 154) and external validation (n = 72) datasets, respectively. CRIM presented with excellent generalization with AUC of 0.956, 1.000, and 1.000 in each external cohort that accepted disparate CT scanning protocol/manufactory. Peel9_fos_InterquartileRange [hazard ratio (HR) = 1.98; P < 0.001] was selected as the independent risk factor. The cox-regression model successfully stratified patients into the high-risk and low-risk groups regarding the time of MaVI development (P < 0.001), PFS (P < 0.001) and OS (P = 0.002). CONCLUSIONS: The CT-based quantitative radiomics analysis could enable high accuracy prediction of subsequent MaVI development in HCC with prognostic implications.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Pronóstico , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
2.
Chin Med Sci J ; 36(3): 173-186, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34666870

RESUMEN

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the fourth leading cause of cancer related death worldwide. China covers over half of cases, leading HCC to be a vital threaten to public health. Despite advances in diagnosis and treatments, high recurrence rate remains a major obstacle in HCC management. Multi-omics currently facilitates surveillance, precise diagnosis, and personalized treatment decision making in clinical setting. Non-invasive radiomics utilizes preoperative radiological imaging to reflect subtle pixel-level pattern changes that correlate to specific clinical outcomes. Radiomics has been widely used in histopathological diagnosis prediction, treatment response evaluation, and prognosis prediction. High-throughput sequencing and gene expression profiling enabled genomics and proteomics to identify distinct transcriptomic subclasses and recurrent genetic alterations in HCC, which would reveal the complex multistep process of the pathophysiology. The accumulation of big medical data and the development of artificial intelligence techniques are providing new insights for our better understanding of the mechanism of HCC via multi-omics, and show potential to convert surgical/intervention treatment into an antitumorigenic one, which would greatly advance precision medicine in HCC management.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inteligencia Artificial , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/genética , Pronóstico
3.
J Magn Reson Imaging ; 52(4): 1239-1248, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32181985

RESUMEN

BACKGROUND: Biopsy Gleason score (GS) is crucial for prostate cancer (PCa) treatment decision-making. Upgrading in GS from biopsy to radical prostatectomy (RP) puts a proportion of patients at risk of undertreatment. PURPOSE: To develop and validate a radiomics model based on multiparametric magnetic resonance imaging (mp-MRI) to predict PCa upgrading. STUDY TYPE: Retrospective, radiomics. POPULATION: A total of 166 RP-confirmed PCa patients (training cohort, n = 116; validation cohort, n = 50) were included. FIELD STRENGTH/SEQUENCE: 3.0T/T2 -weighted (T2 W), apparent diffusion coefficient (ADC), and dynamic contrast enhancement (DCE) sequences. ASSESSMENT: PI-RADSv2 score for each tumor was recorded. Radiomic features were extracted from T2 W, ADC, and DCE sequences and Mutual Information Maximization criterion was used to identify the optimal features on each sequence. Multivariate logistic regression analysis was used to develop predictive models and a radiomics nomogram and their performance was evaluated. STATISTICAL TESTS: Student's t or chi-square were used to assess the differences in clinicopathologic data between the training and validation cohorts. Receiver operating characteristic (ROC) curve analysis was performed and the area under the curve (AUC) was calculated. RESULTS: In PI-RADSv2 assessment, 67 lesions scored 5, 70 lesions scored 4, and 29 lesions scored 3. For each sequence, 4404 features were extracted and the top 20 best features were selected. The radiomics model incorporating signatures from the three sequences achieved better performance than any single sequence (AUC: radiomics model 0.868, T2 W 0.700, ADC 0.759, DCE 0.726). The combined mode incorporating radiomics signature, clinical stage, and time from biopsy to RP outperformed the clinical model and radiomics model (AUC: combined model 0.910, clinical model 0.646, radiomics model 0.868). The nomogram showed good performance (AUC 0.910) and calibration (P-values: training cohort 0.624, validation cohort 0.294). DATA CONCLUSION: Radiomics based on mp-MRI has potential to predict upgrading of PCa from biopsy to RP. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 5 J. Magn. Reson. Imaging 2020;52:1239-1248.


Asunto(s)
Prostatectomía , Neoplasias de la Próstata , Biomarcadores , Biopsia , Humanos , Imagen por Resonancia Magnética , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Estudios Retrospectivos
4.
Eur Radiol ; 29(7): 3325-3337, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30972543

RESUMEN

OBJECTIVES: To develop and validate a radiomics nomogram to preoperative prediction of isocitrate dehydrogenase (IDH) genotype for astrocytomas, which might contribute to the pretreatment decision-making and prognosis evaluating. METHODS: One hundred five astrocytomas (Grades II-IV) with contrast-enhanced T1-weighted imaging (CE-T1WI), T2 fluid-attenuated inversion recovery (T2FLAIR), and apparent diffusion coefficient (ADC) map were enrolled in this study (training cohort: n = 74; validation cohort: n = 31). IDH1/2 genotypes were determined using Sanger sequencing. A total of 3882 radiomics features were extracted. Support vector machine algorithm was used to build the radiomics signature on the training cohort. Incorporating radiomics signature and clinico-radiological risk factors, the radiomics nomogram was developed. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to assess these models. Kaplan-Meier survival analysis and log rank test were performed to assess the prognostic value of the radiomics nomogram. RESULTS: The radiomics signature was built by six selected radiomics features and yielded AUC values of 0.901 and 0.888 in the training and validation cohorts. The radiomics nomogram based on the radiomics signature and age performed better than the clinico-radiological model (training cohort, AUC = 0.913 and 0.817; validation cohort, AUC = 0.900 and 0.804). Additionally, the survival analysis showed that prognostic values of the radiomics nomogram and IDH genotype were similar (log rank test, p < 0.001; C-index = 0.762 and 0.687; z-score test, p = 0.062). CONCLUSIONS: The radiomics nomogram might be a useful supporting tool for the preoperative prediction of IDH genotype for astrocytoma, which could aid pretreatment decision-making. KEY POINTS: • The radiomics signature based on multiparametric and multiregional MRI images could predict IDH genotype of Grades II-IV astrocytomas. • The radiomics nomogram performed better than the clinico-radiological model, and it might be an easy-to-use supporting tool for IDH genotype prediction. • The prognostic value of the radiomics nomogram was similar with that of the IDH genotype, which might contribute to prognosis evaluating.


Asunto(s)
Astrocitoma/genética , Isocitrato Deshidrogenasa/genética , Nomogramas , Adulto , Algoritmos , Área Bajo la Curva , Astrocitoma/diagnóstico por imagen , Astrocitoma/patología , Astrocitoma/cirugía , Sistemas de Apoyo a Decisiones Clínicas , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Genotipo , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Cuidados Preoperatorios/métodos , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores de Riesgo , Máquina de Vectores de Soporte , Adulto Joven
5.
Front Oncol ; 9: 973, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31612111

RESUMEN

Purpose: To develop a model to select appropriate candidates for irradiation stent placement among patients with unresectable pancreatic cancer with malignant biliary obstruction (UPC-MBO). Methods: This retrospective study included 106 patients treated with an irradiation stent for UPC-MBO. These patients were randomly divided into a training group (74 patients) and a validation group (32 patients). A clinical model for predicting restenosis-free survival (RFS) was developed with clinical predictors selected by univariate and multivariate analyses. After integrating the radiomics signature, a combined model was constructed to predict RFS. The predictive performance was evaluated with the concordance index (C-index) in both the training and validation groups. The median risk score of progression in the training group was used to divide patients into high- and low-risk subgroups. Results: Radiomics features were integrated with clinical predictors to develop a combined model. The predictive performance was better in the combined model (C-index, 0.791 and 0.779 in the training and validation groups, respectively) than in the clinical model (C-index, 0.673 and 0.667 in the training and validation groups, respectively). According to the median risk score of 1.264, the RFS was significantly different between the high- and low-risk groups (p < 0.001 for the training group, and p = 0.016 for the validation group). Conclusions: The radiomics-based model had good performance for RFS prediction in patients with UPC-MBO who received an irradiation stent. Patients with slow progression should consider undergoing irradiation stent placement for a longer RFS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA