RESUMEN
Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic "lipid-altered" tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug.
Asunto(s)
Antibióticos Antituberculosos/farmacología , Trastornos Congénitos de Glicosilación/metabolismo , Inhibidores Enzimáticos/farmacología , N-Acetilglucosaminiltransferasas/química , Animales , Antibióticos Antituberculosos/química , Sitios de Unión , Trastornos Congénitos de Glicosilación/genética , Inhibidores Enzimáticos/química , Femenino , Células HEK293 , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Ratones , Simulación del Acoplamiento Molecular , Mutación , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , Células Sf9 , Spodoptera , Tunicamicina/química , Tunicamicina/farmacología , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/metabolismoRESUMEN
Stem-cell-based therapies can potentially reverse organ dysfunction and diseases, but the removal of impaired tissue and activation of a program leading to organ regeneration pose major challenges. In mice, a 4-day fasting mimicking diet (FMD) induces a stepwise expression of Sox17 and Pdx-1, followed by Ngn3-driven generation of insulin-producing ß cells, resembling that observed during pancreatic development. FMD cycles restore insulin secretion and glucose homeostasis in both type 2 and type 1 diabetes mouse models. In human type 1 diabetes pancreatic islets, fasting conditions reduce PKA and mTOR activity and induce Sox2 and Ngn3 expression and insulin production. The effects of the FMD are reversed by IGF-1 treatment and recapitulated by PKA and mTOR inhibition. These results indicate that a FMD promotes the reprogramming of pancreatic cells to restore insulin generation in islets from T1D patients and reverse both T1D and T2D phenotypes in mouse models. PAPERCLIP.
Asunto(s)
Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 2/dietoterapia , Ayuno , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dieta , Prueba de Tolerancia a la Glucosa , Humanos , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos , Ratones , Proteínas del Tejido Nervioso/genética , Páncreas/citología , Páncreas/metabolismo , Transducción de Señal , TranscriptomaRESUMEN
Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
Asunto(s)
Glucólisis , Fosfoglicerato Mutasa , Hormonas Tiroideas , Humanos , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosforilación , Animales , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Ratones , Proteínas de Unión a Hormona Tiroide , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genéticaRESUMEN
DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Unión al ADN , Estrés Oxidativo , Humanos , Adenosina Trifosfato/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , FosforilaciónRESUMEN
Understanding the structure and dynamic process of water at the solid-liquid interface is an extremely important topic in surface science, energy science and catalysis1-3. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level4,5. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis6,7. However, interfacial water is notoriously difficult to probe owing to interference from bulk water and the complexity of interfacial environments8. Here, we use electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces. Direct spectral evidence reveals that interfacial water consists of hydrogen-bonded and hydrated Na+ ion water. At hydrogen evolution reaction (HER) potentials, dynamic changes in the structure of interfacial water were observed from a random distribution to an ordered structure due to bias potential and Na+ ion cooperation. Structurally ordered interfacial water facilitated high-efficiency electron transfer across the interface, resulting in higher HER rates. The electrolytes and electrode surface effects on interfacial water were also probed and found to affect water structure. Therefore, through local cation tuning strategies, we anticipate that these results may be generalized to enable ordered interfacial water to improve electrocatalytic reaction rates.
RESUMEN
Elevated lipid synthesis is one of the best-characterized metabolic alterations in cancer and crucial for membrane expansion. As a key rate-limiting enzyme in de novo fatty acid synthesis, ATP-citrate lyase (ACLY) is frequently up-regulated in tumors and regulated by posttranslational modifications (PTMs). Despite emerging evidence showing O-GlcNAcylation on ACLY, its biological function still remains unknown. Here, we observed a significant upregulation of ACLY O-GlcNAcylation in various types of human tumor cells and tissues and identified S979 as a major O-GlcNAcylation site. Importantly, S979 O-GlcNAcylation is required for substrate CoA binding and crucial for ACLY enzymatic activity. Moreover, it is sensitive to glucose fluctuation and decisive for fatty acid synthesis as well as tumor cell proliferation. In response to EGF stimulation, both S979 O-GlcNAcylation and previously characterized S455 phosphorylation played indispensable role in the regulation of ACLY activity and cell proliferation; however, they functioned independently from each other. In vivo, streptozocin treatment- and EGFR overexpression-induced growth of xenograft tumors was mitigated once S979 was mutated. Collectively, this work helps comprehend how cells interrogate the nutrient enrichment for proliferation and suggests that although mammalian cell proliferation is controlled by mitogen signaling, the ancient nutrition-sensing mechanism is conserved and still efficacious in the cells of multicellular organisms.
Asunto(s)
ATP Citrato (pro-S)-Liasa , Proliferación Celular , Glucosa , Lipogénesis , Humanos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Glucosa/metabolismo , Animales , Ratones , Línea Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Procesamiento Proteico-Postraduccional , Fosforilación , GlicosilaciónRESUMEN
Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of the pancreatic ß-cells. Genome-wide association (GWAS) and fine mapping studies have been conducted mainly in European ancestry (EUR) populations. We performed a multi-ancestry GWAS to identify SNPs and HLA alleles associated with T1D risk and age at onset. EUR families (N = 3223), and unrelated individuals of African (AFR, N = 891) and admixed (Hispanic/Latino) ancestry (AMR, N = 308) were genotyped using the Illumina HumanCoreExome BeadArray, with imputation to the TOPMed reference panel. The Multi-Ethnic HLA reference panel was utilized to impute HLA alleles and amino acid residues. Logistic mixed models (T1D risk) and frailty models (age at onset) were used for analysis. In GWAS meta-analysis, seven loci were associated with T1D risk at genome-wide significance: PTPN22, HLA-DQA1, IL2RA, RNLS, INS, IKZF4-RPS26-ERBB3, and SH2B3, with four associated with T1D age at onset (PTPN22, HLA-DQB1, INS, and ERBB3). AFR and AMR meta-analysis revealed NRP1 as associated with T1D risk and age at onset, although NRP1 variants were not associated in EUR ancestry. In contrast, the PTPN22 variant was significantly associated with risk only in EUR ancestry. HLA alleles and haplotypes most significantly associated with T1D risk in AFR and AMR ancestry differed from that seen in EUR ancestry; in addition, the HLA-DRB1*08:02-DQA1*04:01-DQB1*04:02 haplotype was 'protective' in AMR while HLA-DRB1*08:01-DQA1*04:01-DQB1*04:02 haplotype was 'risk' in EUR ancestry, differing only at HLA-DRB1*08. These results suggest that much larger sample sizes in non-EUR populations are required to capture novel loci associated with T1D risk.
Asunto(s)
Diabetes Mellitus Tipo 1 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Diabetes Mellitus Tipo 1/genética , Masculino , Femenino , Población Blanca/genética , Edad de Inicio , Alelos , Cadenas alfa de HLA-DQ/genética , Población Negra/genética , Niño , Hispánicos o Latinos/genética , Antígenos HLA/genética , AdolescenteRESUMEN
Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.
Asunto(s)
Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/tratamiento farmacológico , Dietoterapia/métodos , Ayuno/fisiología , Fulvestrant/uso terapéutico , Animales , Factores Biológicos/sangre , Neoplasias de la Mama/patología , Dieta Saludable/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Fulvestrant/administración & dosificación , Humanos , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Fosfohidrolasa PTEN/metabolismo , Piperazinas/administración & dosificación , Piperazinas/uso terapéutico , Piridinas/administración & dosificación , Piridinas/uso terapéutico , Receptores de Estrógenos , Receptores de Progesterona , Tamoxifeno/efectos adversos , Tamoxifeno/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The development of cutting-edge techniques to study specific brain regions and neural circuits that regulate sleep-wake brain states and general anesthesia (GA), has increased our understanding of these states that exhibit similar neurophysiologic traits. This review summarizes current knowledge focusing on cell subtypes and neural circuits that control wakefulness, rapid eye movement (REM) sleep, non-REM sleep, and GA. We also review novel insights into their interactions and raise unresolved questions and challenges in this field. Comparisons of the overlapping neural substrates of sleep-wake and GA regulation will help us to understand sleep-wake transitions and how anesthetics cause reversible loss of consciousness. SIGNIFICANCE STATEMENT: General anesthesia (GA), sharing numerous neurophysiologic traits with the process of natural sleep, is administered to millions of surgical patients annually. In the past decade, studies exploring the neural mechanisms underlying sleep-wake and GA have advanced our understanding of their interactions and how anesthetics cause reversible loss of consciousness. Pharmacotherapies targeting the neural substrates associated with sleep-wake and GA regulations have significance for clinical practice in GA and sleep medicine.
Asunto(s)
Sueño REM , Sueño , Humanos , Sueño REM/fisiología , Anestesia General/efectos adversos , Encéfalo/fisiología , InconscienciaRESUMEN
Acacetin, a flavonoid compound, possesses a wide range of pharmacological effects, including antimicrobial, immune regulation, and anticancer effects. Some key steps in its biosynthetic pathway were largely unknown in flowering plants. Here, we present the first haplotype-resolved genome of Chrysanthemum indicum, whose dried flowers contain abundant flavonoids and have been utilized as traditional Chinese medicine. Various phylogenetic analyses revealed almost equal proportion of three tree topologies among three Chrysanthemum species (C. indicum, C. nankingense, and C. lavandulifolium), indicating that frequent gene flow among Chrysanthemum species or incomplete lineage sorting due to rapid speciation might contribute to conflict topologies. The expanded gene families in C. indicum were associated with oxidative functions. Through comprehensive candidate gene screening, we identified five flavonoid O-methyltransferase (FOMT) candidates, which were highly expressed in flowers and whose expressional levels were significantly correlated with the content of acacetin. Further experiments validated two FOMTs (CI02A009970 and CI03A006662) were capable of catalyzing the conversion of apigenin into acacetin, and these two genes are possibly responsible acacetin accumulation in disc florets and young leaves, respectively. Furthermore, combined analyses of ancestral chromosome reconstruction and phylogenetic trees revealed the distinct evolutionary fates of the two validated FOMT genes. Our study provides new insights into the biosynthetic pathway of flavonoid compounds in the Asteraceae family and offers a model for tracing the origin and evolutionary routes of single genes. These findings will facilitate in vitro biosynthetic production of flavonoid compounds through cellular and metabolic engineering and expedite molecular breeding of C. indicum cultivars.
Asunto(s)
Chrysanthemum , Evolución Molecular , Flavonas , Genoma de Planta , Filogenia , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/metabolismo , Chrysanthemum/enzimología , Flavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Haplotipos , Diploidia , Flavonoides/metabolismo , Flavonoides/biosíntesis , Flores/genética , Flores/enzimología , Flores/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismoRESUMEN
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
RESUMEN
All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1-4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of [Formula: see text] solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.
RESUMEN
Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Secuencia Conservada , Cricetinae , Microscopía por Crioelectrón , Epítopos/inmunología , Humanos , Ratones , Pruebas de Neutralización , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.
Asunto(s)
Saccharomycetales , Saccharum , Fermentación , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Señalización de MAP Quinasas , Melaza , AminoácidosRESUMEN
HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.
Asunto(s)
Ésteres del Colesterol , Colesterol , Mitocondrias , Membranas Mitocondriales , Sulfotransferasas , Animales , Colesterol/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Mitocondrias/metabolismo , Ésteres del Colesterol/metabolismo , Membranas Mitocondriales/metabolismo , Ratones , Respiración de la Célula/fisiología , Respiración de la Célula/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Riñón/metabolismo , Ratones Endogámicos C57BLRESUMEN
Strong metal-support interaction (SMSI) has been extensively studied in heterogeneous catalysis because of its significance in stabilizing active metals and tuning catalytic performance, but the origin of SMSI is not fully revealed. Herein, by using Pt/CeO2 as a model catalyst, we report an embedding structure at the interface between Pt and (110) plane of CeO2, where Pt clusters (â¼1.6 nm) are embedded into the lattice of ceria within 3-4 atomic layers. In contrast, this phenomenon is absent in the CeO2(100) support. This unique geometric structure, as an effective motivator, triggers more significant electron transfer from Pt clusters to CeO2(110) support accompanied by the formation of interfacial structure (Ptδ+-Ov-Ce3+), which plays a crucial role in stabilizing Pt nanoclusters. A comprehensive investigation based on experimental studies and theoretical calculations substantiates that the interfacial sites serve as the intrinsic active center toward water-gas shift reaction (WGSR), featuring a moderate strength CO activation adsorption and largely decreased energy barrier of H2O dissociation, accounting for the prominent catalytic activity of Pt/CeO2(110) (a reaction rate of 15.76 molCO gPt-1 h-1 and a turnover frequency value of 2.19 s-1 at 250 °C). In addition, the Pt/CeO2(110) catalyst shows a prominent durability within a 120 h time-on-stream test, far outperforming the Pt/CeO2(100) one, which demonstrates the advantages of this embedding structure for improving catalyst stability.
RESUMEN
Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
Asunto(s)
Población Negra/genética , Estatura/genética , Estudio de Asociación del Genoma Completo , África/etnología , Negro o Afroamericano/genética , Europa (Continente)/etnología , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Herein, we synthesized anemone-like copper-based metal-organic frameworks (MOFs) loaded with gold-palladium nanoparticles (AuPd@Cu-MOFs) and polyethylenimine-reduced graphene oxide/gold-silver nanosheet composites (PEI-rGO/AuAg NSs) for the first time to construct the sensor and to detect T-2 toxin (T-2) using triple helix molecular switch (THMS) and signal amplification by swing-arm robot. The aptasensor used PEI-rGO/hexagonal AuAg NSs as the electrode modification materials and anemone-like AuPd@Cu-MOFs as the signal materials. The prepared PEI-rGO/hexagonal AuAg NSs had a large specific surface area, excellent electrical conductivity, and good stability, which successfully improved the electrochemical performance of the sensors. The AuPd@Cu-MOFs with high porosity provided a great deal of attachment sites for the signaling molecule thionine (Thi), thereby increasing the signal response. The aptasensor developed in this study demonstrated a remarkable detection limit of 0.054 fg mL-1 under optimized conditions. Furthermore, the successful detection of T-2 in real samples was achieved using the fabricated sensor. The simplicity of the THMS-based method, which entails modifying the aptamer sequence, allows for easy adaptation to different target analytes. Thus, the sensor holds immense potential for applications in quality supervision and food safety.
Asunto(s)
Anemone , Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Estructuras Metalorgánicas , Robótica , Toxina T-2 , Estructuras Metalorgánicas/química , Cobre/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Paladio , Grafito/química , Oro/química , Técnicas Electroquímicas/métodos , Límite de Detección , Técnicas Biosensibles/métodosRESUMEN
BACKGROUND: The advances in deep learning-based pathological image analysis have invoked tremendous insights into cancer prognostication. Still, lack of interpretability remains a significant barrier to clinical application. METHODS: We established an integrative prognostic neural network for intrahepatic cholangiocarcinoma (iCCA), towards a comprehensive evaluation of both architectural and fine-grained information from whole-slide images. Then, leveraging on multi-modal data, we conducted extensive interrogative approaches to the models, to extract and visualize the morphological features that most correlated with clinical outcome and underlying molecular alterations. RESULTS: The models were developed and optimized on 373 iCCA patients from our center and demonstrated consistent accuracy and robustness on both internal (n = 213) and external (n = 168) cohorts. The occlusion sensitivity map revealed that the distribution of tertiary lymphoid structures, the geometric traits of the invasive margin, the relative composition of tumor parenchyma and stroma, the extent of necrosis, the presence of the disseminated foci, and the tumor-adjacent micro-vessels were the determining architectural features that impacted on prognosis. Quantifiable morphological vector extracted by CellProfiler demonstrated that tumor nuclei from high-risk patients exhibited significant larger size, more distorted shape, with less prominent nuclear envelope and textural contrast. The multi-omics data (n = 187) further revealed key molecular alterations left morphological imprints that could be attended by the network, including glycolysis, hypoxia, apical junction, mTORC1 signaling, and immune infiltration. CONCLUSIONS: We proposed an interpretable deep-learning framework to gain insights into the biological behavior of iCCA. Most of the significant morphological prognosticators perceived by the network are comprehensible to human minds.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Aprendizaje Profundo , Humanos , Colangiocarcinoma/patología , Pronóstico , Neoplasias de los Conductos Biliares/patología , Masculino , Femenino , Persona de Mediana Edad , Procesamiento de Imagen Asistido por Computador/métodos , AncianoRESUMEN
Constructing high-entropy alloys (HEAs) with core-shell (CS) nanostructure is efficient for enhancing catalytic activity. However, it is extremely challenging to incorporate the CS structure with HEAs. Herein, PtCoNiMoRh@Rh CS nanoparticles (PtCoNiMoRh@Rh) with â¼5.7 nm for pH-universal hydrogen evolution reaction (HER) are reported for the first time. The PtCoNiMoRh@Rh just require 9.1, 24.9, and 17.1 mV to achieve -10 mA cm-2 in acid, neutral, and alkaline electrolyte, and the corresponding mass activity are 5.8, 2.79, and 91.8 times higher than that of Rh/C. Comparing to PtCoNiMoRh nanoparticles, the PtCoNiMoRh@Rh exhibit excellent HER activity attributed to the decrease of Rh 4d especially 4d5/2 unoccupied state induced by the multi-active sites in HEA, as well as the synergistic effect in Rh shell and HEA core. Theorical calculation exhibits that Rh-dyz, dx2, and dxz orbitals experience a negative shift with shell thickness increasing. The HEAs with CS structure would facilitate the rational design of high-performance HEAs catalysts.