Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 597(7878): 688-692, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497416

RESUMEN

Mechanisms that favour rare species are key to the maintenance of diverse communities1-3. One of the most critical tasks for conservation of flowering plant biodiversity is to understand how plant-pollinator interactions contribute to the maintenance of rare species4-7. Here we show that niche partitioning in pollinator use and asymmetric facilitation confer fitness advantage of rarer species in a biodiversity hotspot using phylogenetic structural equation modelling that integrates plant-pollinator and interspecific pollen transfer networks with floral functional traits. Co-flowering species filtered pollinators via floral traits, and rarer species showed greater pollinator specialization leading to higher pollination-mediated male and female fitness than more abundant species. When plants shared pollinator resources, asymmetric facilitation via pollen transport dynamics benefitted the rarer species at the cost of more abundant species, serving as an alternative diversity-promoting mechanism. Our results emphasize the importance of community-wide plant-pollinator interactions that affect reproduction for biodiversity maintenance.


Asunto(s)
Biodiversidad , Magnoliopsida/clasificación , Polinización , Animales , California , Ecosistema , Flores/anatomía & histología , Aptitud Genética , Insectos , Modelos Biológicos , Filogenia , Polen
2.
Blood ; 143(1): 32-41, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37824804

RESUMEN

ABSTRACT: Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is a lethal syndrome because of persistent EBV infection. When diagnosed as CAEBV, EBV infection was observed in multiple hematopoietic lineages, but the etiology of CAEBV is still elusive. Bone marrow and peripheral cells derived from 5 patients with CAEBV, 1 patient with EBV-associated hemophagocytic lymphohistiocytosis, and 2 healthy controls were analyzed. Multiple assays were applied to identify and characterize EBV-infected cells, including quantitative polymerase chain reaction, PrimeFlow, and single-cell RNA-sequencing (scRNA-seq). Based on scRNA-seq data, alterations in gene expression of particular cell types were analyzed between patients with CAEBV and controls, and between infected and uninfected cells. One patient with CAEBV was treated with allogeneic hematopoietic stem cell transplantation (HSCT), and the samples derived from this patient were analyzed again 6 months after HSCT. EBV infected the full spectrum of the hematopoietic system including both lymphoid and myeloid lineages, as well as the hematopoietic stem cells (HSCs) of the patients with CAEBV. EBV-infected HSCs exhibited a higher differentiation rate toward downstream lineages, and the EBV infection had an impact on both the innate and adaptive immunity, resulting in inflammatory symptoms. EBV-infected cells were thoroughly removed from the hematopoietic system after HSCT. Taken together, multiple lines of evidence presented in this study suggest that CAEBV disease originates from the infected HSCs, which might potentially lead to innovative therapy strategies for CAEBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Humanos , Herpesvirus Humano 4/genética , Enfermedad Crónica , Linfohistiocitosis Hemofagocítica/complicaciones , Células Madre Hematopoyéticas
3.
Immunity ; 46(3): 474-487, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28314594

RESUMEN

Brain ischemia inhibits immune function systemically, with resulting infectious complications. Whether in stroke different immune alterations occur in brain and periphery and whether analogous mechanisms operate in these compartments remains unclear. Here we show that in patients with ischemic stroke and in mice subjected to middle cerebral artery occlusion, natural killer (NK) cells display remarkably distinct temporal and transcriptome profiles in the brain as compared to the periphery. The activation of catecholaminergic and hypothalamic-pituitary-adrenal axis leads to splenic atrophy and contraction of NK cell numbers in the periphery through a modulated expression of SOCS3, whereas cholinergic innervation-mediated suppression of NK cell responses in the brain involves RUNX3. Importantly, pharmacological or genetic ablation of innervation preserved NK cell function and restrained post-stroke infection. Thus, brain ischemia compromises NK cell-mediated immune defenses through mechanisms that differ in the brain versus the periphery, and targeted inhibition of neurogenic innervation limits post-stroke infection.


Asunto(s)
Isquemia Encefálica/inmunología , Encéfalo/inmunología , Células Asesinas Naturales/inmunología , Bazo/inmunología , Anciano , Animales , Isquemia Encefálica/complicaciones , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Infecciones/etiología , Infecciones/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098070

RESUMEN

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Asunto(s)
Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Ligandos , Linfocitos T CD8-positivos , Unión Proteica
5.
Proc Biol Sci ; 291(2023): 20240612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772419

RESUMEN

Plant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweed Lemna minor, we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal. Our results revealed that the addition of predators increased plant population size and phosphorus removal, whereas the addition of parasites showed the opposite pattern. The structural equation modelling further pointed out that predation and parasitism affected plant population size and ecosystem function via distinct mechanisms that were both mediated by microbiomes. Our results highlight the importance of understanding microbial trophic interactions for predicting the outcomes and ecosystem impacts of plant-microbiome symbiosis.


Asunto(s)
Ecosistema , Microbiota , Cadena Alimentaria , Araceae/microbiología , Araceae/fisiología , Simbiosis , Densidad de Población , Fósforo/metabolismo
6.
Appl Environ Microbiol ; : e0085024, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016614

RESUMEN

Viral communities exist in a variety of ecosystems and play significant roles in mediating biogeochemical processes, whereas viruses inhabiting strongly alkaline geochemical systems remain underexplored. In this study, the viral diversity, potential functionalities, and virus-host interactions in a strongly alkaline environment (pH = 10.4-12.4) exposed to the leachates derived from the serpentinization-like reactions of smelting slags were investigated. The viral populations (e.g., Herelleviridae, Queuovirinae, and Inoviridae) were closely associated with the dominating prokaryotic hosts (e.g., Meiothermus, Trueperaceae, and Serpentinomonas) in this ultrabasic environment. Auxiliary metabolic genes (AMGs) suggested that viruses may enhance hosts' fitness by facilitating cofactor biosynthesis, hydrogen metabolism, and carbon cycling. To evaluate the activity of synthesis of essential cofactor vitamin B9 by the viruses, a viral folA (vfolA) gene encoding dihydrofolate reductase (DHFR) was introduced into a thymidine-auxotrophic strain Escherichia coli MG1655 ΔfolA mutant, which restored the growth of the latter in the absence of thymidine. Notably, the homologs of the validated vDHFR were globally distributed in the viromes across various ecosystems. The present study sheds new light on the unique viral communities in hyperalkaline ecosystems and their potential beneficial impacts on the coexisting microbial consortia by supplying essential cofactors. IMPORTANCE: This study presents a comprehensive investigation into the diversity, potential functionalities, and virus-microbe interactions in an artificially induced strongly alkaline environment. Functional validation of the detected viral folA genes encoding dihydrofolate reductase substantiated the synthesis of essential cofactors by viruses, which may be ubiquitous, considering the broad distribution of the viral genes associated with folate cycling.

7.
Cancer Invest ; 42(6): 527-537, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965994

RESUMEN

Despite the emergence of various treatment strategies for rectal cancer based on neoadjuvant chemoradiotherapy, there is currently a lack of reliable biomarkers to determine which patients will respond well to neoadjuvant chemoradiotherapy. Through collecting hematological and biochemical parameters data of patients prior to receiving neoadjuvant chemoradiotherapy, we evaluated the predictive value of systemic inflammatory indices for pathological response and prognosis in rectal cancer patients. We found that baseline GRIm-Score was an independent predictor for MPR in rectal cancer patients. However, no association was observed between several commonly systemic inflammation indices and long-term outcome.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Neoplasias del Recto/inmunología , Masculino , Femenino , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Anciano , Quimioembolización Terapéutica/métodos , Pronóstico , Resultado del Tratamiento , Adulto , Quimioradioterapia/métodos
8.
Chemistry ; 30(32): e202401108, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38567703

RESUMEN

Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.


Asunto(s)
Selectina E , Virus de la Influenza A , Polisacáridos , Antígeno Sialil Lewis X , Polisacáridos/química , Polisacáridos/metabolismo , Virus de la Influenza A/metabolismo , Antígeno Sialil Lewis X/metabolismo , Antígeno Sialil Lewis X/química , Selectina E/metabolismo , Selectina E/química , Humanos , Oligosacáridos/química , Oligosacáridos/síntesis química , Oligosacáridos/metabolismo , Receptores Virales/metabolismo , Receptores Virales/química , Epítopos/química , Epítopos/metabolismo , Animales
9.
Mol Cell Biochem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967721

RESUMEN

Extracellular vesicles (EVs) produced from MSCs were currently considered as a novel therapeutic agent for skin tissue regeneration and repair. Preconditioning stem cells may activate more molecular pathways and release more bioactive agents. In this study, we obtained EVs from normal (N-EVs) and serum- and glucose-deprived (SGD-EVs) human umbilical cord mesenchymal stem cells (HUCMSCs), and showed that SGD-EVs promoted the migration, proliferation, and tube formation of HUVECs in vitro. In vivo experiments utilizing a rat model show that both N-EVs and SGD-EVs boosted angiogenesis of skin defects and accelerated skin wound healing, while treating wounds with SGD-EVs led to faster skin healing and enhanced angiogenesis. miRNA sequencing showed that miR-29a-3p was abundant in SGD-EVs, and overexpressing miR-29a-3p enhanced the angiogenic ability of HUVECs, while inhibiting miR-29a-3p presented the opposite effect. Further studies demonstrated that miR-29a-3p directly targeted CTNNBIP1, which mediated angiogenesis of HUCMSCs-derived EVs through inhibiting CTNNBIP1 to activate Wnt/ß-catenin signaling pathway. Taken together, these findings suggested that SGD-EVs promote angiogenesis via transferring miR-29a-3p, and activation of Wnt/ß-catenin signaling pathway played a crucial role in SGD-EVs-induced VEGFA production during wound angiogenesis. Our results offered a new avenue for modifying EVs to enhance tissue angiogenesis and augment its role in skin repair.

10.
Am J Bot ; : e16287, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366679

RESUMEN

PREMISE: Whole-genome duplication (neopolyploidy) can instantly differentiate the phenotype of neopolyploids from their diploid progenitors. These phenotypic shifts in organs such as roots and leaves could also differentiate the way neopolyploids interact with microbial species. While some studies have addressed how specific microbial interactions are affected by neopolyploidy, we lack an understanding of how genome duplication affects the diversity and composition of microbial communities. METHODS: We performed a common garden experiment with multiple clones of artificially synthesized autotetraploids and their ancestral diploids, derived from 13 genotypes of wild strawberry, Fragaria vesca. We sequenced epiphytic bacteria and fungi from roots and leaves and characterized microbial communities and leaf functional traits. RESULTS: Autotetraploidy had no effect on bacterial alpha diversity of either organ, but it did have a genotype-dependent effect on the diversity of fungi on leaves. In contrast, autotetraploidy restructured the community composition of leaf bacteria and had a genotype-dependent effect on fungal community composition in both organs. The most differentially abundant bacterial taxon on leaves belonged to the Sphingomonas, while a member of the Trichoderma was the most differentially abundant fungal taxon on roots. Ploidy-induced change in leaf size was strongly correlated with a change in bacterial but not fungal leaf communities. CONCLUSIONS: Genome duplication can immediately alter aspects of the plant microbiome, but this effect varies by host genotype and bacterial and fungal community. Expanding these studies to wild settings where plants are exposed continuously to microbes are needed to confirm the patterns observed here.

11.
Neurol Sci ; 45(5): 2191-2197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37982973

RESUMEN

BACKGROUND: Very late-onset neuromyelitis optica spectrum disorder-related optic neuritis is limited to a few case reports. OBJECTIVE: To investigate the clinical features and visual prognosis of very late-onset neuromyelitis optica spectrum disorder-related optic neuritis. METHODS: This study evaluated 22 patients with first-onset optic neuritis and fulfilled the 2015 diagnosis criteria for neuromyelitis optica spectrum disorders. RESULTS: The mean age at optic neuritis onset was 73.91 ± 4.71 (range: 70-82) years with a female predominance (81.8%; ratio: 4.5:1). Antinuclear antibody seropositivity and seronegativity were identified in 12 (55.5%) and 10 (45.5%) patients, respectively. Severe visual loss persisted in 19 (19/42, 45.3%) eyes at the last follow-up. Although patients with antinuclear antibody seropositivity had a significantly higher frequency of attacks (P = 0.015), but they had a longer median time to reach severe visual loss (37 vs. 26 months; log-rank test, P = 0.023). Multivariate logistic regression analysis revealed antinuclear antibody seropositivity (hazard ratio = 4.849, 95% confidence interval: 1.309-17.965, P = 0.018) as a good predictor of visual acuity improvement. CONCLUSION: Patients with very late-onset neuromyelitis optica spectrum disorder-related optic neuritis may develop severe optic neuritis, and those with antinuclear antibody seronegativity have a similar clinical presentation but worse outcome than those with seropositivity.


Asunto(s)
Neuromielitis Óptica , Neuritis Óptica , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Neuromielitis Óptica/diagnóstico , Anticuerpos Antinucleares , Neuritis Óptica/diagnóstico , Pronóstico , Ojo , Acuaporina 4 , Estudios Retrospectivos
12.
BMC Ophthalmol ; 24(1): 237, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844903

RESUMEN

BACKGROUND: The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS: ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS: After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION: PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.


Asunto(s)
Apoptosis , Supervivencia Celular , Estrés Oxidativo , Peroxirredoxinas , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Rayos Ultravioleta , Humanos , Epitelio Pigmentado de la Retina/efectos de la radiación , Epitelio Pigmentado de la Retina/metabolismo , Peroxirredoxinas/metabolismo , Rayos Ultravioleta/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Línea Celular , Western Blotting , Células Cultivadas , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Transducción de Señal
13.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753480

RESUMEN

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/genética , Aminoacilación/genética , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/sangre , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Linfocitos , Mutación , Neuropilina-1/genética , Cultivo Primario de Células , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño
14.
Altern Ther Health Med ; 30(1): 122-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773655

RESUMEN

Objective: To explore whether contrast-enhanced ultrasound (CEUS) can improve tubal ectopic pregnancy detection rate, tubal dilation, tubal hematoma, and gestational sac. Methods: This retrospective study included 34 patients with suspected ectopic pregnancy who underwent contrast-enhanced ultrasound at Dongzhimen Hospital of Beijing University of Chinese Medicine between March 2021 and September 2016. Of these, 27 patients were confirmed to have tubal pregnancy by laparoscopic surgery and histopathology. Four ultrasound physicians (2 experts and 2 non-experts) conducted a retrospective analysis of conventional color Doppler ultrasound and the combination of conventional color Doppler ultrasound with contrast-enhanced ultrasound (color Doppler ultrasound + CEUS). They analyzed the differences in confidence levels and reproducibility in identifying tubal dilation, tubal hematoma, and gestational sac implantation sites. Additionally, the characteristic features of ectopic pregnancy on contrast-enhanced ultrasound were summarized, including gestational sac morphology, triple ring sign, enhancement patterns (branching or punctate), tubal dilation (with or without hematoma), contrast enhancement of tubal walls, and presence of free fluid. Results: In the expert group, the correct identification rate of the gestational sac implantation site on ultrasound images increased from 13/34 (38.2%) with conventional color Doppler ultrasound to 20/34 (58.8%) with color Doppler ultrasound + CEUS, the differences were statistically significant (38.2% vs. 58.8%, P = .039). The correct identification rate of tubal dilation increased from 6/34 (17.7%) to 25/34 (73.5%) (P = .001), and the correct identification rate of tubal hematoma increased from 3/34 (8.8%) to 17/34 (50.0%) with color Doppler ultrasound + CEUS (P < .001). In the non-expert group, the correct identification rate of the gestational sac implantation site increased from 8/24 (23.5%) with conventional ultrasound to 19/34 (55.9%) with ultrasound + CEUS (P = .003). The correct identification rate of tubal dilation increased from 6/34 (17.7%) to 23/34 (67.7%) (P < .001), and the correct identification rate of tubal hematoma increased from 3/34 (8.82%) to 12/34 (35.3%) with color Doppler ultrasound + CEUS (P = .012). Conclusion: The analysis of contrast-enhanced ultrasound images provides characteristic features and diagnostic points for tubal ectopic pregnancy, including gestational sac, thick ring sign, tubal dilation, and tubal dilation with hematoma. This approach improves the accuracy of partial pregnancy of unknown location (PUL) diagnosis and reduces the technical dependence on ultrasound personnel.


Asunto(s)
Embarazo Ectópico , Embarazo Tubario , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Embarazo Tubario/diagnóstico por imagen , Embarazo Ectópico/diagnóstico por imagen , Resultado del Tratamiento , Hematoma
15.
Lasers Med Sci ; 39(1): 89, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453744

RESUMEN

Various treatment modalities have been applied to atrophic scars. Fractional CO2 laser treatment has attracted increasingly more attention because of its quicker recovery time and fewer side effects. However, its limitation of sculpting the edge is an urgent shortcoming. In order to achieve a more effective result with fewer complications, we have integrated ultrapulse CO2 and fractional CO2 lasers to for the treatment of facial atrophic scars. The study included 25 patients (10 males and 15 females) diagnosed with moderate to severe atrophic scars between August 2020 and July 2022. All subjects underwent the same surgical treatment. The effects were assessed at baseline, 1 week, 1 month, and 3 months using photographic evidence. Objective evaluation of the results was conducted using a quartile grading scale, while the subjects' satisfaction and any adverse events were also recorded. The patients in the study underwent more than two laser sessions (2-5), resulting in substantial improvement in their appearance. The time interval between each session was 3-6 months. The majority of the patients (19/25, 76%) had a significant or even excellent improvement. Any adverse events observed, such as erythema, superficial crusting, and PIH, were of a mild nature and temporary in duration. This treatment combined two CO2 lasers is an effective and safe choice for atrophic scars in Asians.


Asunto(s)
Acné Vulgar , Láseres de Gas , Masculino , Femenino , Humanos , Cicatriz/patología , Dióxido de Carbono , Resultado del Tratamiento , Acné Vulgar/complicaciones , Eritema/etiología , Láseres de Gas/uso terapéutico , Atrofia/complicaciones
16.
Rev Esp Enferm Dig ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832596

RESUMEN

The inverted hyperplastic polyp (IHP) is known as hyperplastic gastric mucosa growth into submucosa and endoscopically presented as sessile or pedunculated submucosa lesion. It occurs in between 3.1% to 20.1% of cases, while its malignant transformation rate is just 0.02%. A male underwent esophagogastroduodenoscopy (EGD) and discovered a submucosal lesion with a pinhole-like orifice in the fundus. And endoscopic ultrasound (EUS) showed it was a heterogenous hypoechoic lesion located in the submucosa. After endoscopic resection, the pathological findings and immunohistochemical staining revealed it was inverted hyperplastic polyp (IHP) with adenocarcinoma. The measurement of the cancerous IHP depth of invasion is controversial. Thus, how to define the depth of lesion invasion in this patient needs to be seriously considered. To manage IHP with adenocarcinoma better, the depth of lesion invasion cancerous IHP needs to be seriously considered.

17.
Carcinogenesis ; 44(6): 463-475, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37158456

RESUMEN

Circular RNAs (circRNAs) have been accepted to play key roles in the development and progression of mutiple cancers including colorectal cancer (CRC). Here, we identified circ-METTL9, derived from 2 to 4 exons of METTL9 gene, may promote CRC progression by accelerating cell cycle progression. However, the role and mechanism of circ-METTL9 in CRC remains unclear. Based on our data, the expression of circ-METTL9 was significantly upregulated in CRC tissues and markedly increased in advanced tumors in CRC patients. Functional experiments demonstrated that circ-METTL9 overexpression promoted CRC cells proliferation and migration in vitro, and simultaneously enhanced CRC tumor growth and metastasis in vivo. Mechanistically, RNA immunoprecipitation (RIP) assays proved that circ-METTL9 might be a miRNA sponge, and RNA pulldown assays showed the interaction between circ-METTL9 and miR-551b-5p. Notably, cyclin-dependent kinase 6 (CDK6), a key regulator in cell cycle, is a conserved downstream target of miR-551b-5p. Taken together, our findings highlight a novel oncogenic function of circ-METTL9 in CRC progression via circ-METTL9/miR-551b-5p/CDK6 axis, which may serve as a prognostic biomarker and therapeutic target for CRC patients.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Quinasa 6 Dependiente de la Ciclina/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Metiltransferasas/metabolismo
18.
Neuroimage ; 270: 119989, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858331

RESUMEN

Additional neural substance for reading in a second language has been reported by prior studies. However, to date, there has been little investigation into whether and how the brain's adaptation to a second language is induced by specific linguistic tasks or is a general effect during reading in a new language. To address this issue, our study investigated Chinese children learning English as a second language by combining cross-sectional and longitudinal Functional Magnetic Resonance Imaging (fMRI) studies. We compared brain activation across four reading tasks, orthographic tasks and phonological tasks in Chinese (the first language, L1) and English (the second language, L2). By comparing the activation pattern across languages, we observed greater activation in the left inferior parietal lobule (LIPL) in English compared to Chinese, suggesting a functional preference of the LIPL to L2. In addition, greater correlation between LIPL-related FC and L2 was mainly observed in the phonological task, indicating that LIPL could be associated with phonological processing. Moreover, a proportion of the children were enrolled in an 8-week phonological-based reading-training program. We observed significant functional plasticity of the LIPL elicited by this training program only in the English phonological task and not in the orthographic task, further substantiating that the additional requirements of the LIPL in L2 are mainly associated with phonological processing. The findings provide new insights into understanding the functional contribution of the LIPL to reading in a second language.


Asunto(s)
Multilingüismo , Lectura , Niño , Humanos , Mapeo Encefálico , Estudios Transversales , Encéfalo/fisiología , Lenguaje , Lóbulo Parietal/diagnóstico por imagen , Imagen por Resonancia Magnética
19.
J Transl Med ; 21(1): 622, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710295

RESUMEN

BACKGROUND: Biological ageing is tightly linked to cardiovascular disease (CVD). We aimed to investigate the relationship between Life's Essential 8 (LE8), a currently updated measure of cardiovascular health (CVH), and biological ageing. METHODS: This cross-sectional study selected adults ≥ 20 years of age from the 2005-2010 National Health and Nutrition Examination Survey. LE8 scores (range 0-100) were obtained from measurements based on American Heart Association definitions, divided into health behavior and health factor scores. Biological ageing was assessed by different methods including phenotypic age, phenotypic age acceleration (PhenoAgeAccel), biological age and biological age acceleration (BioAgeAccel). Correlations were analyzed by weighted linear regression and restricted cubic spline models. RESULTS: Of the 11,729 participants included, the mean age was 47.41 ± 0.36 years and 5983 (51.01%) were female. The mean phenotypic and biological ages were 42.96 ± 0.41 and 46.75 ± 0.39 years, respectively, and the mean LE8 score was 67.71 ± 0.35. After adjusting for potential confounders, higher LE8 scores were associated with lower phenotypic age, biological age, PhenoAgeAccel, and BioAgeAccel, with nonlinear dose-response relationships. Negative associations were also found between health behavior and health factor scores and biological ageing, and were stronger for health factors. In health factor-specific analyses, the ß negativity was greater for blood glucose and blood pressure. The inverse correlations of LE8 scores with phenotypic age and biological age in the stratified analyses remained solid across strata. CONCLUSIONS: LE8 and its subscale scores were strongly negatively related to biological ageing. Encouraging optimal CVH levels may be advantageous in preventing and slowing down ageing.


Asunto(s)
Envejecimiento , Glucemia , Estados Unidos , Humanos , Adulto , Femenino , Persona de Mediana Edad , Masculino , Estudios Transversales , Encuestas Nutricionales , Presión Sanguínea
20.
Toxicol Appl Pharmacol ; 472: 116574, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271225

RESUMEN

Pyroptosis, an inflammatory programmed cell death, has been suggested as a novel molecular mechanism for the treatment of hepatocellular carcinoma (HCC) with chemotherapeutic agents. Recent studies showed that natural killer (NK) cells could inhibit apoptosis and regulate the progression of pyroptosis in tumor cells. Schisandrin B (Sch B), a lignan isolated from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, has various pharmacological activities including anti-cancer effects. The purpose of this study was to investigate the effect of NK cells on Sch B's regulation of pyroptosis in HCC cells and the molecular mechanisms implicated. The results showed that Sch B alone could decrease cell viability and induce apoptosis in HepG2 cells. However, Sch B induced apoptosis in HepG2 cells was transformed into pyroptosis in the presence of NK cells. The mechanisms underlying NK cell's effect on pyroptosis in Sch B-treated HepG2 cells was related to its activation of caspase 3-Gasdermin E (GSDME). Further studies revealed that NK cell induced caspase 3 activation was derived from its activation of perforin-granzyme B pathway. This study explored the effect of Sch B and NK cells on pyroptosis in HepG2 cells and revealed that perforin-granzyme B-caspase 3-GSDME pathway is involved in the process of pyroptosis. These results proposed an immunomodulatory mechanism of Sch B on HepG2 cells pyroptosis and suggested Sch B as a promising immunotherapy combination partner for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Lignanos , Neoplasias Hepáticas , Humanos , Piroptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Células Hep G2 , Caspasa 3/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Lignanos/farmacología , Células Asesinas Naturales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA