Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 14: 1132265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122731

RESUMEN

The JAK/STAT and NFκB signaling pathways are two major inflammatory signaling pathways that are usually activated simultaneously in the body's inflammatory response to bacterial or viral infections. Hyperactivation of these two prominent signaling pathways is associated with various immune-related diseases and mortality, pointing to an urgent need for drug development targeting JAK/STAT and/or NFκB signaling. In this study, we screened 18,840 compounds using our well-established dual STAT-NFκB driven luciferase reporter based high-throughput screening system and identified a bioactive compound C498-0670, which inhibits both JAK/STAT and NFκB signaling. C498-0670 inhibits the activation of STATs and p-IKKα/ß in both the immortalized cell lines and primary peritoneal macrophages, while suppressing the expression of LPS-induced inflammatory mediators in vitro. In addition, the overall anti-inflammatory effects of C498-0670 were investigated using transcriptome sequencing and bioinformatics approaches. C498-0670 was predicted to alleviate sepsis/septic shock by disease/function analysis using IPA software, which was further verified in the LPS-induced mouse sepsis model in vivo. C498 reduced LPS-induced liver and kidney damage, myeloid cell infiltration, and pro-inflammatory cytokine and chemokine production in vivo. Furthermore, the SPR-HPLC-MS-based target fishing approach was used to identify the putative drug targets, and the high affinities of JAK2 (JAK/STAT signaling), NFKBIA (NFκB signaling), and IL-1ß, NLRP1b (inflammasome signaling) for C498-0670 were verified by molecular docking approach. These results suggest that C498-0670 can be used as a dual-target inhibitor of JAK/STAT and NFκB signaling pathways for the treatment of various inflammatory diseases, especially septic shock.


Asunto(s)
Lipopolisacáridos , Choque Séptico , Ratones , Animales , Lipopolisacáridos/farmacología , Choque Séptico/inducido químicamente , Choque Séptico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Quinasas Janus/metabolismo , Transducción de Señal , FN-kappa B/metabolismo
2.
Adv Sci (Weinh) ; 10(23): e2301096, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37283464

RESUMEN

Glioblastoma (GBM) is a devastating inflammation-related cancer for which novel therapeutic targets are urgently required. Previous studies of the authors indicate Cytochrome P450 2E1 (CYP2E1) as a novel inflammatory target and develop a specific inhibitor Q11. Here it is demonstrated that CYP2E1 overexpression is closely related to higher malignancy in GBM patients. CYP2E1 activity is positively correlated with tumor weight in GBM rats. Significantly higher CYP2E1 expression accompanied by increased inflammation is detected in a mouse GBM model. Q11, 1-(4-methyl-5-thialzolyl) ethenone, a newly developed specific inhibitor of CYP2E1 here remarkably attenuates tumor growth and prolongs survival in vivo. Q11 does not directly affect tumor cells but blocks the tumor-promoting effect of microglia/macrophage (M/Mφ) in the tumor microenvironment through PPARγ-mediated activation of the STAT-1 and NF-κB pathways and inhibition of the STAT-3 and STAT-6 pathways. The effectiveness and safety of targeting CYP2E1 in GBM are further supported by studies with Cyp2e1 knockout rodents. In conclusion, a pro-GBM mechanism in which CYP2E1-PPARγ-STAT-1/NF-κB/STAT-3/STAT-6 axis fueled tumorigenesis by reprogramming M/Mφ and Q11 as a promising anti-inflammatory agent for GBM treatment is uncovered.


Asunto(s)
Citocromo P-450 CYP2E1 , Glioblastoma , Ratones , Ratas , Animales , Citocromo P-450 CYP2E1/metabolismo , FN-kappa B/metabolismo , PPAR gamma , Glioblastoma/tratamiento farmacológico , Inflamación , Microambiente Tumoral
3.
Signal Transduct Target Ther ; 7(1): 287, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963848

RESUMEN

Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Fibrosis , Humanos , Inflamación , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA