Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7988): 724-731, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938779

RESUMEN

Nanomaterials must be systematically designed to be technologically viable1-5. Driven by optimizing intermolecular interactions, current designs are too rigid to plug in new chemical functionalities and cannot mitigate condition differences during integration6,7. Despite extensive optimization of building blocks and treatments, accessing nanostructures with the required feature sizes and chemistries is difficult. Programming their growth across the nano-to-macro hierarchy also remains challenging, if not impossible8-13. To address these limitations, we should shift to entropy-driven assemblies to gain design flexibility, as seen in high-entropy alloys, and program nanomaterial growth to kinetically match target feature sizes to the mobility of the system during processing14-17. Here, following a micro-then-nano growth sequence in ternary composite blends composed of block-copolymer-based supramolecules, small molecules and nanoparticles, we successfully fabricate high-performance barrier materials composed of more than 200 stacked nanosheets (125 nm sheet thickness) with a defect density less than 0.056 µm-2 and about 98% efficiency in controlling the defect type. Contrary to common perception, polymer-chain entanglements are advantageous to realize long-range order, accelerate the fabrication process (<30 min) and satisfy specific requirements to advance multilayered film technology3,4,18. This study showcases the feasibility, necessity and unlimited opportunities to transform laboratory nanoscience into nanotechnology through systems engineering of self-assembly.

2.
J Mol Cell Cardiol ; 189: 38-51, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387723

RESUMEN

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.


Asunto(s)
Disección Aórtica , Cannabidiol , Animales , Humanos , Ratones , Aminopropionitrilo/farmacología , Disección Aórtica/tratamiento farmacológico , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Cannabidiol/farmacología , Cannabidiol/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/patología
3.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445906

RESUMEN

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Asunto(s)
Hidrolasas de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudios Prospectivos , Biodegradación Ambiental , Poliésteres/metabolismo , Plásticos
4.
Microb Pathog ; 194: 106829, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084310

RESUMEN

Goose astroviruses (GAstVs) are important pathogens which can cause gout in goslings leading to huge economic losses for the goose farming industry in China. In 2023, an infectious disease characterized by visceral gout broke out in commercial goose farms in Guangxi and Guangdong provinces of China. In this study, two GAstV strains of GXNN and GDCS were successfully isolated from these two disease-ridden goose farms. The complete genomic lengths of these two strains were 7166 bp, and phylogenetic analysis showed that they were both GAstV-2 subtypes. The 3-dimensional structures of the capsid protein were predicted and six characteristic mutation sites at amino acid positions 60, 61, 228, 229, 456 and 523 were found within the strong antigenic regions. A recombination event occurred at 6833-7070 nt between the GAstV TZ03 and Turkey astrovirus CA/00 and this was detected in both the GXNN and GDCS strains. Another recombinant event occurred at 63-2747 nt between the GAstV XT1 and GAstV SDPY and this was detected in the GDCS strain. When 1-day-old goslings were infected with the novel GXNN and GDCS strains, they showed severe visceral gout. This was accompanied by enlarged spleens, liver hemorrhages and urate deposits in the kidneys and ureters and their blood urea nitrogen levels were significantly elevated. The mortality rates of the GXNN- and GDCS-infected groups were pathogenically high at 80 % and 60 %, respectively. These results will promote our understanding of the evolution and epidemic potential of GAstVs in China.

5.
Appl Microbiol Biotechnol ; 108(1): 392, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910173

RESUMEN

In the last decades, biocatalysis has offered new perspectives for the synthesis of (chiral) amines, which are essential building blocks for pharmaceuticals, fine and bulk chemicals. In this regard, amidases have been employed due to their broad substrate scope and their independence from expensive cofactors. To expand the repertoire of amidases, tools for their rapid identification and characterization are greatly demanded. In this work an ultra-high throughput growth selection assay based on the production of the folate precursor p-aminobenzoic acid (PABA) is introduced to identify amidase activity. PABA-derived amides structurally mimic the broad class of commonly used chromogenic substrates derived from p-nitroaniline. This suggests that the assay should be broadly applicable for the identification of amidases. Unlike conventional growth selection assays that rely on substrates as nitrogen or carbon source, our approach requires PABA in sub-nanomolar concentrations, making it exceptionally sensitive and ideal for engineering campaigns that aim at enhancing amidase activities from minimally active starting points, for example. The presented assay offers flexibility in the adjustment of sensitivity to suit project-specific needs using different expression systems and fine-tuning with the antimetabolite sulfathiazole. Application of this PABA-based assay facilitates the screening of millions of enzyme variants on a single agar plate within two days, without the need for laborious sample preparation or expensive instruments, with transformation efficiency being the only limiting factor. KEY POINTS: • Ultra-high throughput assay (tens of millions on one agar plate) for amidase screening • High sensitivity by coupling selection to folate instead of carbon or nitrogen source • Highly adjustable in terms of sensitivity and expression of the engineering target.


Asunto(s)
Ácido 4-Aminobenzoico , Amidohidrolasas , Ensayos Analíticos de Alto Rendimiento , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/química , Especificidad por Sustrato , Escherichia coli/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo
6.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38445839

RESUMEN

A method for characterizing the topological fluctuations in liquids is proposed. This approach exploits the concept of the weighted gyration tensor of a collection of particles and permits the definition of a local configurational unit (LCU). The first principal axis of the gyration tensor serves as the director of the LCU, which can be tracked and analyzed by molecular dynamics simulations. Analysis of moderately supercooled Kob-Andersen mixtures suggests that orientational relaxation of the LCU closely follows viscoelastic relaxation and exhibits a two-stage behavior. The slow relaxing component of the LCU corresponds to the structural, Maxwellian mechanical relaxation. Additionally, it is found that the mean curvature of the LCUs is approximately zero at the Maxwell relaxation time with the Gaussian curvature being negative. This observation implies that structural relaxation occurs when the configurationally stable and destabilized regions interpenetrate each other in a bicontinuous manner. Finally, the mean and Gaussian curvatures of the LCUs can serve as reduced variables for the shear stress correlation, providing a compelling proof of the close connection between viscoelastic relaxation and topological fluctuations in glass-forming liquids.

7.
Ann Vasc Surg ; 101: 41-52, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154490

RESUMEN

BACKGROUND: Few methods can cocurrently mimic the pathological characteristics and nature history of human abdominal aortic aneurysms (AAAs), especially for the exist of the self-healing tendency of rodents. This study tested a novel method for the AAA rat model induced by retroperitoneal implantation of an osmotic pump system with lipopolysaccharide (LPS) based on the hypothesis that chronic inflammation of perivascular adipose tissue directly influenced the development and progression of AAAs. METHODS: 20 male Sprague-Dawley rats (10-month-old) fed with the Paigen diet were randomly divided into 4 groups: the blank group ×2, the sham group ×4, the empty capsule group ×4, and the LPS capsule group ×10. The LPS capsule group received implantations of the ALZET® osmotic pump capsule with LPS (3.6 µg/day) parallel to the abdominal aorta through a retroperitoneal approach. Two weeks later, 6 rats were randomly selected from the LPS capsule group to form the anti-inflammatory group and received implantations of another osmotic pump capsule with interleukin (IL)-10 (75 ng/day) through the same approach. The changes in abdominal aortic diameter were observed by ultrasound every 2 weeks, and samples were harvested for histopathologic and immunohistochemical analysis 6 weeks later. RESULTS: Within the 6 weeks after modeling, the LPS capsule group showed sustained and significant aortic dilatation (P < 0.01), while the anti-inflammatory group showed a rapid and obvious shrinkage 2 weeks after the IL-10 osmotic pump capsule implantation (P < 0.01). The LPS capsule group presented excellent pathological mimicking of human AAAs and showed severe medial degeneration with the least elastic content among the 5 groups at the end of the sixth week (P < 0.05). Notably, the anti-inflammatory group showed perfect medial preservation with the most elastic content (P < 0.05) and the highest elastin/collagen ratio (P < 0.01) at the end of the study. Matrix metalloproteinases (MMP) 2 and 9 and toll-like receptor 2 showed strong expression in the LPS capsule group at the end of the sixth week, which was significantly higher than that in the blank group and sham group. Interestingly, the anti-inflammatory group showed a slightly higher MMP9 expression than the LPS capsule group though there was no statistical difference between them. CONCLUSIONS: This novel method for the rat AAA model induced by retroperitoneal implantation of an osmotic pump capsule with LPS can concurrently mimic the histological characteristics and natural history of human AAAs. Further studies were needed to improve the osmotic pump system.


Asunto(s)
Aneurisma de la Aorta Abdominal , Lipopolisacáridos , Humanos , Ratas , Masculino , Animales , Lactante , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/metabolismo , Ratas Sprague-Dawley , Resultado del Tratamiento , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/cirugía , Aorta Abdominal/metabolismo , Antiinflamatorios , Modelos Animales de Enfermedad
8.
J Med Internet Res ; 26: e60083, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971715

RESUMEN

This viewpoint article first explores the ethical challenges associated with the future application of large language models (LLMs) in the context of medical education. These challenges include not only ethical concerns related to the development of LLMs, such as artificial intelligence (AI) hallucinations, information bias, privacy and data risks, and deficiencies in terms of transparency and interpretability but also issues concerning the application of LLMs, including deficiencies in emotional intelligence, educational inequities, problems with academic integrity, and questions of responsibility and copyright ownership. This paper then analyzes existing AI-related legal and ethical frameworks and highlights their limitations with regard to the application of LLMs in the context of medical education. To ensure that LLMs are integrated in a responsible and safe manner, the authors recommend the development of a unified ethical framework that is specifically tailored for LLMs in this field. This framework should be based on 8 fundamental principles: quality control and supervision mechanisms; privacy and data protection; transparency and interpretability; fairness and equal treatment; academic integrity and moral norms; accountability and traceability; protection and respect for intellectual property; and the promotion of educational research and innovation. The authors further discuss specific measures that can be taken to implement these principles, thereby laying a solid foundation for the development of a comprehensive and actionable ethical framework. Such a unified ethical framework based on these 8 fundamental principles can provide clear guidance and support for the application of LLMs in the context of medical education. This approach can help establish a balance between technological advancement and ethical safeguards, thereby ensuring that medical education can progress without compromising the principles of fairness, justice, or patient safety and establishing a more equitable, safer, and more efficient environment for medical education.


Asunto(s)
Inteligencia Artificial , Educación Médica , Educación Médica/ética , Humanos , Inteligencia Artificial/ética , Lenguaje , Privacidad
9.
Arthroscopy ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38395267

RESUMEN

PURPOSE: To evaluate the correlation between suture contamination and rotator cuff tendon retear after arthroscopic rotator cuff repair. METHODS: Patients undergoing primary arthroscopic rotator cuff repair from April 1, 2020, to September 30, 2022, were enrolled. Those younger than 18 years, with a history of shoulder surgeries or shoulder infection episodes, or who declined participation were excluded. A 5-cm section of the first-cut suture, originating from the anchor eyelet ends, in each rotator cuff repair surgery was subjected to bacteria culture and polymerase chain reaction analysis. Patients with positive culture findings were matched 1:1 to those with negative culture reports based on age, sex, tear size as well as involved tendons, preoperative fatty infiltration grade (Goutallier grade), and preoperative muscle atrophy grade (Warner score). Postoperative rotator cuff tendon retear assessments were conducted at the 6-month mark using the Sugaya classification via magnetic resonance imaging. The Wilcoxon signed-rank test was used for matched-pair comparisons between the groups. RESULTS: A total of 141 patients (60 men and 81 women) with a mean age of 61.0 ± 8 years were finally enrolled. Twenty-six patients (18 men and 8 women) had a positive culture, while 115 patients (42 men and 73 women) had a negative culture. After the propensity score matching process, 24 culture-negative patients (16 men and 8 women) were selected as the culture-negative group. Age, fatty infiltration grade, and muscle atrophy grade were not significantly different between matched groups. The retear grade in the culture-positive group was significantly higher than that in the culture-negative group (P = .020) under the matched-pair comparison. Cutibacterium acnes was the most prevalent bacterial species responsible for suture contamination. CONCLUSIONS: The matched-pair analysis revealed that the presence of bacterial contamination on sutures was associated with a higher risk of retear on magnetic resonance imaging following arthroscopic rotator cuff repair. LEVEL OF EVIDENCE: Level III, retrospective cohort study.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38642872

RESUMEN

BACKGROUND: To identify and quantify the factors associated with the reparability of rotator cuff tears (RCTs). METHODS: PubMed, Scopus, and Web of Science databases were searched for clinical studies published in English focusing on RCT reparability by using the keywords "rotator cuff tear" and "reparability". A meta-analysis was conducted if ≥3 studies examined the same factor and provided enough data to assess RCT reparability. Quality assessment was completed using the quality assessment of diagnostic accuracy studies tool. RESULTS: Eighteen studies (2700 patients) were enrolled and 26 factors were included in the meta-analysis. The dichotomous variables associated with irreparability were Patte stage 3 (odds ratio (OR): 8.0, 95% confidence interval [CI]: 4.3-14.9), massive tear vs. large tear (OR: 3.1, 95% CI: 1.3-7.2), Goutallier stage for each tendon, and tangent sign (OR: 11.1, 95% CI: 4.3-28.4). The continuous variables associated with irreparability were age (mean difference (MD): 3.25, 95% CI: 1.4-5.1), mediolateral tear size (MD: 12.3, 95% CI: 5.8-18.9), anteroposterior tear size (MD: 10.4, 95% CI: 5.2-15.6), acromiohumeral distance on X-ray (MD: -2.3, 95% CI: -3.0 to -1.6) and magnetic resonance imaging (MD: -1.8, 95% CI: -2.8 to -0.9), and inferior glenohumeral distance on magnetic resonance imaging (MD: 2.2, 95% CI: 1.4-3.0). CONCLUSION: This study revealed that older age, larger tear size, severe fatty infiltration, muscle atrophy, and advanced superior migration of the humeral head were strongly associated with irreparable RCTs. Conversely, clinical symptoms provided limited information for predicting reparability. Additionally, the tangent sign emerged as a powerful and simple tool for individual prediction, and several quantitative scoring systems also proved useful.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38762151

RESUMEN

BACKGROUND: All-suture buttons (ASB) and interference screw (IS) are commonly utilized in the inlay subpectoral biceps tendon tenodesis. However, the biomechanical characteristics of these two methods have not been compared directly. The aim of present study was to compare the biomechanical properties of ASB versus IS for inlay subpectoral biceps tendon tenodesis in a human cadaveric model. METHODS: Sixteen fresh-frozen human cadaveric shoulders were randomly divided into two experimental inlay biceps tenodesis groups: ASB or IS. After tenodesis, every specimen was preloaded at 5 N for 2 minutes, followed with a cyclic loading test from 5 to 70 N for 500 load cycles. Then the load-to-failure test was performed. Afterwards, the humerus was placed in a cylinder tube and secured with anchoring cement. Lastly, a two-point bending test was performed to determine the strength of the humerus. Destructive axial force was applied, and the failure strength and displacement were recorded. RESULTS: No difference in stiffness was observed between the two groups (ASB=27.4 ± 3.5 N/mm vs IS= 29.7 ± 3.0 N/mm; P=.270). Cyclic displacement was significantly greater in the ASB group (6.8 ± 2.6 mm) than the IS group (3.8 ± 1.1 mm; P=.021). In terms of failure load, there were no statistical differences among the two groups (P=.234). The ASB group was able to withstand significantly greater displacement (11.9 ± 1.6 mm) before failure than the IS group (7.8 ± 1.5mm; P=.001). During the humeral bending test, the ASB group exhibited significantly greater maximal load (2354.8 ± 285.1 N vs 2086.4 ± 296.1 N; P=.046) and larger displacement (17.8 ± 2.8mm vs 14.1± 2.8 mm; P=.027) before fracture. CONCLUSIONS: In inlay subpectoral bicep tenodesis, ASB fixation appears to offer comparable stiffness and failure load to that of IS fixation. Additionally, the ASB group exhibited greater resistance to load and displacement before humeral fracture. However, the ASB group did demonstrate increased cyclic displacement compared to IS group.

12.
Nano Lett ; 23(24): 11387-11394, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-37906586

RESUMEN

With a growing demand for detecting light at the single-photon level in various fields, researchers are focused on optimizing the performance of superconducting single-photon detectors (SSPDs) by using multiple approaches. However, input light coupling for visible light has remained a challenge in the development of efficient SSPDs. To overcome these limitations, we developed a novel system that integrates NbN superconducting microwire photon detectors (SMPDs) with gap-plasmon resonators to improve the photon detection efficiency to 98% while preserving all detector performance features, such as polarization insensitivity. The plasmonic SMPDs exhibit a hot-belt effect that generates a nonlinear photoresponse in the visible range operated at 9 K (∼0.64Tc), resulting in a 233-fold increase in phonon-electron interaction factor (γ) compared to pristine SMPDs at resonance under CW illumination. These findings open up new opportunities for ultrasensitive single-photon detection in areas like quantum information processing, quantum optics, imaging, and sensing at visible wavelengths.

13.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000118

RESUMEN

Multidrug-resistant P. aeruginosa infections pose a serious public health threat due to the rise in antimicrobial resistance. Phage therapy has emerged as a promising alternative. However, P. aeruginosa has evolved various mechanisms to thwart phage attacks, making it crucial to decipher these resistance mechanisms to develop effective therapeutic strategies. In this study, we conducted a forward-genetic screen of the P. aeruginosa PA14 non-redundant transposon library (PA14NR) to identify dominant-negative mutants displaying phage-resistant phenotypes. Our screening process revealed 78 mutants capable of thriving in the presence of phages, with 23 of them carrying insertions in genes associated with membrane composition. Six mutants exhibited total resistance to phage infection. Transposon insertions were found in genes known to be linked to phage-resistance such as galU and a glycosyl transferase gene, as well as novel genes such as mexB, lasB, and two hypothetical proteins. Functional experiments demonstrated that these genes played pivotal roles in phage adsorption and biofilm formation, indicating that altering the bacterial membrane composition commonly leads to phage resistance in P. aeruginosa. Importantly, these mutants displayed phenotypic trade-offs, as their resistance to phages inversely affected antibiotic resistance and hindered biofilm formation, shedding light on the complex interplay between phage susceptibility and bacterial fitness. This study highlights the potential of transposon mutant libraries and forward-genetic screens in identifying key genes involved in phage-host interactions and resistance mechanisms. These findings support the development of innovative strategies for combating antibiotic-resistant pathogens.


Asunto(s)
Elementos Transponibles de ADN , Biblioteca de Genes , Mutación , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/genética , Elementos Transponibles de ADN/genética , Biopelículas/crecimiento & desarrollo , Bacteriófagos/genética , Bacteriófagos/fisiología
14.
Acta Cardiol Sin ; 40(4): 383-387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045378

RESUMEN

Ojective: To understand hypertensive patients' preference for catheter-based therapy to manage hypertension. Methods: Survey data regarding catheter-based therapies performed at MacKay Memorial Hospital in Taipei, Taiwan, between 2019-2020 were analyzed. The questionnaire was circulated either in the clinics or during admission. A total of 46 patients completed the questionnaire. Results: A total of 46 patients (mean age 53.4 ± 13.5 years, 78.3% male) completed the questionnaire. In subgroup analysis according to Taiwan renal denervation (RDN) consensus, patients with drug intolerance (61.8% vs. 31.3%, p = 0.02) were more likely to choose RDN. Moreover, although lacking statistical significance, it is noteworthy that numerically more of the resistant hypertension group (55.6% vs. 28.0%, p = 0.09) and non-adherence group (38.5% vs. 30.0%, p = 0.20) were willing to undergo RDN. Conversely, numerically fewer patients with hypertension-mediated organ damage accepted RDN compared to those who did not have hypertension-mediated organ damage (26.1% vs. 43.5%, p = 0.21), although this disparity did not reach statistical significance. Conclusions: Approximately one-third of the patients expressed interest in considering RDN in this study. The most influential factor in patients' preference for RDN was drug intolerance due to medication-related side effects.

15.
Angew Chem Int Ed Engl ; 63(1): e202313633, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37880836

RESUMEN

Biotechnological recycling offers a promising solution to address the environmental concerns associated with waste plastics, particularly polyethylene terephthalate (PET), widely utilized in packaging materials and textiles. To advance the development of a bio-based circular plastic economy, innovative upcycling strategies capable of generating higher-value products are needed. In this study, we enhanced the enzymatic depolymerization of waste PET by incorporating highly concentrated calcium ions (up to 1 m) to the hydrolytic reaction catalyzed by the best currently known enzyme LCCICCG . The presence of calcium ions not only improved the thermal stability and activity of the biocatalyst but also significantly reduced the consumption of base required to maintain optimal pH levels. Employing optimized conditions at 80 °C for 12 h, we successfully converted ≈84 % of the waste PET (200 g L-1 ) into solid hydrated calcium terephthalate (CaTP ⋅ 3H2 O) as the primary product instead of soluble terephthalate salt. CaTP ⋅ 3H2 O was easily purified and employed as a raw material for battery electrode production, exhibiting an initial reversible specific capacity of 164.2 mAh g-1 . Through techno-economic analysis, we conclusively demonstrated that the one-pot biocatalysis-based synthesis of CaTP is a superior PET upcycling strategy than the secondary synthesis method employing recycled terephthalic acid.

16.
Angew Chem Int Ed Engl ; : e202404492, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38948941

RESUMEN

While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.

17.
J Transl Med ; 21(1): 734, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853415

RESUMEN

BACKGROUND AND AIMS: The recurrence and metastasis of hepatocellular carcinoma (HCC) are mainly caused by microvascular invasion (MVI). Our study aimed to uncover the cellular atlas of MVI+ HCC and investigate the underlying immune infiltration patterns with radiomics features. METHODS: Three MVI positive HCC and three MVI negative HCC samples were collected for single-cell RNA-seq analysis. 26 MVI positive HCC and 30 MVI negative HCC tissues were underwent bulk RNA-seq analysis. For radiomics analysis, radiomics features score (Radscore) were built using preoperative contrast MRI for MVI prediction and overall survival prediction. We deciphered the metabolism profiles of MVI+ HCC using scMetabolism and scFEA. The correlation of Radscore with the level of APOE+ macrophages and iCAFs was identified. Whole Exome Sequencing (WES) was applied to distinguish intrahepatic metastasis (IM) and multicentric occurrence (MO). Transcriptome profiles were compared between IM and MO. RESULTS: Elevated levels of APOE+ macrophages and iCAFs were detected in MVI+ HCC. There was a strong correlation between the infiltration of APOE+ macrophages and iCAFs, as confirmed by immunofluorescent staining. MVI positive tumors exhibited increased lipid metabolism, which was attributed to the increased presence of APOE+ macrophages. APOE+ macrophages and iCAFs were also found in high levels in IM, as opposed to MO. The difference of infiltration level and Radscore between two nodules in IM was relatively small. Furthermore, we developed Radscore for predicting MVI and HCC prognostication that were also able to predict the level of infiltration of APOE+ macrophages and iCAFs. CONCLUSION: This study demonstrated the interactions of cell subpopulations and distinct metabolism profiles in MVI+ HCC. Besides, MVI prediction Radscore and MVI prognostic Radscore were highly correlated with the infiltration of APOE+ macrophages and iCAFs, which helped to understand the biological significance of radiomics and optimize treatment strategy for MVI+ HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Estudios Retrospectivos , Invasividad Neoplásica , Apolipoproteínas E/genética
18.
J Neurol Neurosurg Psychiatry ; 94(1): 31-37, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216455

RESUMEN

OBJECTIVE: To evaluate the clinical significance of deep learning-derived brain age prediction in neuromyelitis optica spectrum disorder (NMOSD) relative to relapsing-remitting multiple sclerosis (RRMS). METHODS: This cohort study used data retrospectively collected from 6 tertiary neurological centres in China between 2009 and 2018. In total, 199 patients with NMOSD and 200 patients with RRMS were studied alongside 269 healthy controls. Clinical follow-up was available in 85 patients with NMOSD and 124 patients with RRMS (mean duration NMOSD=5.8±1.9 (1.9-9.9) years, RRMS=5.2±1.7 (1.5-9.2) years). Deep learning was used to learn 'brain age' from MRI scans in the healthy controls and estimate the brain age gap (BAG) in patients. RESULTS: A significantly higher BAG was found in the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 years) groups compared with healthy controls. A higher baseline disability score and advanced brain volume loss were associated with increased BAG in both patient groups. A longer disease duration was associated with increased BAG in RRMS. BAG significantly predicted Expanded Disability Status Scale worsening in patients with NMOSD and RRMS. CONCLUSIONS: There is a clear BAG in NMOSD, although smaller than in RRMS. The BAG is a clinically relevant MRI marker in NMOSD and RRMS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Estudios Retrospectivos , Estudios de Cohortes , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
19.
Cells Tissues Organs ; 212(2): 147-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34695819

RESUMEN

There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.


Asunto(s)
Hemolinfa , Ganglios Linfáticos , Ratas , Humanos , Animales , Ganglios Linfáticos/patología , Riñón , Trasplante Homólogo , Eritrocitos
20.
Fish Shellfish Immunol ; 140: 108931, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37437824

RESUMEN

Endoplasmic reticulum oxidoreductase 1 (ERO1) is an important mediator in regulating disulfide bond formation and maintaining endoplasmic reticulum homeostasis. Its activity is transcriptionally regulated by the unfolded protein response (UPR) in the endoplasmic reticulum, which is known to be essential in immunity. However, whether ERO1 is involved in innate immunity in invertebrates remains unclear. In the present study, two subtypes of ERO1 from Scylla paramamosain were first identified and characterized. Sequence analysis revealed the conserved ERO1 domain and the oxidative capacity assay verified the oxidative capacity of SpERO1 recombinant protein. Moreover, SpERO1s were found to be ubiquitously expressed in all the tested tissues, with the highest expression observed in hemocytes. Two SpERO1s exhibited distinct expression patterns in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Importantly, the downregulation of the expression of immune factors upon bacterial challenge in SpERO1-silenced crabs was observed. These results provided an initial foundation for further investigations into the role of ERO1 in the innate immunity of invertebrates.


Asunto(s)
Braquiuros , Animales , Oxidorreductasas , Inmunidad Innata/genética , Bacterias/metabolismo , Proteínas Recombinantes , Proteínas de Artrópodos , Filogenia , Hemocitos , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA