Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Pharmacol Rev ; 76(4): 579-598, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38622001

RESUMEN

In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.


Asunto(s)
Inmunoconjugados , Medicina de Precisión , Enfermedades Reumáticas , Humanos , Enfermedades Reumáticas/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Medicina de Precisión/métodos , Animales , Antirreumáticos/uso terapéutico , Antirreumáticos/farmacología
2.
Brain Behav Immun ; 117: 12-19, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38157946

RESUMEN

Microglia, resident immune cells in the central nervous system, constantly monitor the state of the surrounding brain activity. The animal model induced by sleep deprivation (SD) is widely used to study the pathophysiological mechanisms of insomnia and bipolar disorder. However, it remains unclear whether SD affects behaviors in young and aged male mice and microglia in various brain regions. In this study, we confirmed brain region-specific changes in microglial density and morphology in the accumbens nucleus (Acb), amygdala (AMY), cerebellum (Cb), corpus callosum (cc), caudate putamen, hippocampus (HIP), hypothalamus (HYP), medial prefrontal cortex (mPFC), and thalamus (TH) of young mice. In addition, the density of microglia in old mice was higher than that in young mice. Compared with young mice, old mice showed a markedly increased microglial size, decreased total length of microglial processes, and decreased maximum length. Importantly, we found that 48-h SD decreased microglial density and morphology in old mice, whereas SD increased microglial density and morphology in most observed brain regions in young mice. SD-induced hyperactivity was observed only in young mice but not in old mice. Moreover, microglial density (HIP, AMY, mPFC, CPu) was significantly positively correlated with behaviors in SD- and vehicle-treated young mice. Contrarily, negative correlations were shown between the microglial density (cc, Cb, TH, HYP, Acb, AMY) and behaviors in vehicle-treated young and old mice. These results suggest that SD dysregulates the homeostatic state of microglia in a region- and age-dependent manner. Microglia may be involved in regulating age-related behavioral responses to SD.


Asunto(s)
Microglía , Privación de Sueño , Ratones , Masculino , Animales , Encéfalo , Hipocampo , Amígdala del Cerebelo
3.
Pharmacol Res ; 205: 107224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777113

RESUMEN

INTRODUCTION: Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES: To explore the role of Midline-1 (Mid1) in synovial activation. METHODS: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS: An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION: Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Dipeptidil Peptidasa 4 , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Sinovitis , Ubiquitina-Proteína Ligasas , Animales , Humanos , Masculino , Ratones , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Proliferación Celular , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Ratones Endogámicos NOD , Ratones Noqueados , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo , Sinoviocitos/patología , Sinovitis/metabolismo , Sinovitis/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Graefes Arch Clin Exp Ophthalmol ; 262(8): 2651-2659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456927

RESUMEN

PURPOSE: To analyze the radiological features of the lacrimal gland (LG) and extraocular muscle (EOM) in thyroid eye disease (TED) patients with severe subjective dry eye disease (DED) using magnetic resonance imaging (MRI) measurements. METHODS: In this cross-sectional study, mechanical ocular exposure, dry eye assessment and MRI data were collected. Patients were classified into non-severe subjective DED group with ocular surface disease index (OSDI) < 33 and severe subjective DED group with OSDI ≥ 33. Linear regression model was applied for comparing the OSDI < 33 and OSDI ≥ 33 group in TED patients. The predictive performance of MRI parameters and models was assessed by receiver operating characteristic curve (ROC) analysis. RESULTS: Consecutive 88 TED patients (176 eyes) were included in this study. In the OSDI < 33 group, 52 TED patients (104 eyes) with a mean clinical activity score (CAS) of 0.63 ± 0.75. In the OSDI ≥ 33 group, there are 36 TED patients (72 eyes), with a mean CAS of 1.50 ± 1.54. The age and sex of the patients were matched between the two groups. The OSDI ≥ 33 group had shorter tear break-up time, larger levator palpebrae superioris / superior rectus (LPS/SR), inferior rectus and lateral rectus, smaller LG, more inflammatory LPS/SR and inferior rectus than OSDI < 33 DED group (P < 0.05). In the linear regression analysis, compare to the OSDI < 33 DED group, the OSDI ≥ 33 group had larger medial rectus cross-sectional area (ß = 0.06, 95%CI: (0.02, 0.10), P = 0.008), larger inferior rectus cross-sectional area (ß = 0.06, 95%CI: (0.00, 0.12), P = 0.048), smaller LG cross-sectional area (ß = -0.14, 95%CI: (-0.25, -0.04), P = 0.008). In the ROC analysis, the area under curve of medial rectus, inferior rectus, LG, and combined model are 0.625, 0.640, 0.661 and 0.716, respectively. CONCLUSION: Multiparametric MRI parameters of the LG and EOM in TED patients with severe subjective DED were significantly altered. Novel models combining the cross-sectional area of LG, medial rectus and inferior rectus showed good predictive performance in TED patients with severe subjective DED.


Asunto(s)
Síndromes de Ojo Seco , Oftalmopatía de Graves , Aparato Lagrimal , Imágenes de Resonancia Magnética Multiparamétrica , Músculos Oculomotores , Curva ROC , Humanos , Músculos Oculomotores/diagnóstico por imagen , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Oftalmopatía de Graves/diagnóstico , Síndromes de Ojo Seco/diagnóstico , Aparato Lagrimal/diagnóstico por imagen , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Adulto , Índice de Severidad de la Enfermedad , Estudios Retrospectivos , Anciano
5.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879298

RESUMEN

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Botrytis , Transcriptoma , Transcriptoma/fisiología , Antifúngicos/metabolismo , Péptidos Catiónicos Antimicrobianos/toxicidad , Botrytis/efectos de los fármacos , Botrytis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Peróxido de Hidrógeno , Expresión Génica , Transportadoras de Casetes de Unión a ATP/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mitocondrias , Estrés Oxidativo
6.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675657

RESUMEN

Triple-negative breast cancer (TNBC) is a malignant breast cancer. There is an urgent need for effective drugs to be developed for TNBC. Tubocapsicum anomalum (T. anomalum) has been reported to have an anti-tumor effect, and six novel withanolides were isolated from it and designated as TAMEWs. However, its anti-TNBC effect is still unknown. The results of an MTT assay indicated a higher sensitivity of TNBC cells to TAMEWs compared to other cells. TAMEWs induced apoptosis via mitochondrial dysfunction. They caused increased levels of lipid ROS and Fe2+, with downregulation of GSH and cystine uptake, and it has been confirmed that TAMEWs induced ferroptosis. Additionally, the results of Western blotting indicate that TAMEWs significantly decrease the expressions of ferroptosis-related proteins. Through further investigation, it was found that the knockdown of the p53 gene resulted in a significant reversal of ferroptosis and the expressions of its associated proteins SLC7A11, ASCT2, and GPX4. In vivo, TAMEWs suppressed TNBC growth with no obvious damage. The IHC results also showed that TAMEWs induced apoptosis and ferroptosis in vivo. Our findings provide the first evidence that TAMEWs suppress TNBC growth through apoptosis and ferroptosis.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Apoptosis , Ferroptosis , Neoplasias de la Mama Triple Negativas , Proteína p53 Supresora de Tumor , Witanólidos , Ferroptosis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Witanólidos/farmacología , Witanólidos/química , Apoptosis/efectos de los fármacos , Femenino , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Animales , Línea Celular Tumoral , Ratones , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Molecules ; 29(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064971

RESUMEN

Hypsizygus marmoreus has abundant proteins and is a potential source for the development of bioactive peptides. However, currently, the research on the bioactive components of H. marmoreus mainly focuses on polysaccharides, and there is no relevant research on the preparation of bioactive peptides. In this article, an ultrasound-assisted extraction method was used to extract proteins from H. marmoreus, and then, four peptides with different molecular weight ranges were prepared through protease hydrolysis and molecular classification. The antioxidant and antibacterial activities were also studied. Under the optimal conditions, the extraction rate of H. marmoreus proteins was 53.6%. Trypsin exhibited the highest hydrolysis rate of H. marmoreus proteins. The optimal parameters for enzymatic hydrolysis were a substrate concentration of 3.7%, enzyme addition of 5700 U/g, pH value of 7, extraction temperature of 55 °C, and time of 3.3 h. Under these conditions, the peptide yield was 59.7%. The four types of H. marmoreus peptides were prepared by molecular weight grading. Among them, peptides with low molecular weight (<1 kDa) had stronger antioxidant and antibacterial activities. This study provides a theoretical basis for the efficient preparation of H. marmoreus peptides and the development of antioxidant and antibacterial peptide products.


Asunto(s)
Antibacterianos , Antioxidantes , Peso Molecular , Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Animales , Hidrólisis , Pruebas de Sensibilidad Microbiana
8.
World J Microbiol Biotechnol ; 40(5): 161, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613738

RESUMEN

Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.


Asunto(s)
Fragaria , Rhizopus , Sedum , Flavonoides/farmacología , Peróxido de Hidrógeno , Citocromos c , Mitocondrias
9.
Angew Chem Int Ed Engl ; 63(18): e202402236, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38357746

RESUMEN

Environmentally friendly electrocatalytic coupling of CO2 and N2 for urea synthesis is a promising strategy. However, it is still facing problems such as low yield as well as low stability. Here, a new carbon-coated liquid alloy catalyst, Ga79Cu11Mo10@C is designed for efficient electrochemical urea synthesis by activating Ga active sites. During the N2 and CO2 co-reduction process, the yield of urea reaches 28.25 mmol h-1 g-1, which is the highest yield reported so far under the same conditions, the Faraday efficiency (FE) is also as high as 60.6 % at -0.4 V vs. RHE. In addition, the catalyst shows excellent stability under 100 h of testing. Comprehensive analyses showed that sequential exposure of a high density of active sites promoted the adsorption and activation of N2 and CO2 for efficient coupling reactions. This coupling reaction occurs through a thermodynamic spontaneous reaction between *N=N* and CO to form a C-N bond. The deformability of the liquid state facilitates catalyst recovery and enhances stability and resistance to poisoning. Moreover, the introduction of Cu and Mo stimulates the Ga active sites, which successfully synthesises the *NCON* intermediate. The reaction energy barrier of the third proton-coupled electron transfer process rate-determining step (RDS) *NHCONH→*NHCONH2 was lowered, ensuring the efficient synthesis of urea.

10.
Front Oncol ; 14: 1336191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529373

RESUMEN

High mobility group protein 1 (HMGB1) plays a complex role in tumor biology. When released into the extracellular space, it binds to the receptor for advanced glycation end products (RAGE) located on the cell membrane, playing an important role in tumor development by regulating a number of biological processes and signal pathways. In this review, we outline the multifaceted functions of the HMGB1/RAGE axis, which encompasses tumor cell proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is instrumental in tumor progression, promoting tumor cell proliferation, autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through pivotal signaling pathways, including MAPK, NF-κB, PI3K/AKT, ERK, and STAT3. Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining tumor development. Therefore, a deeper understanding of the mechanisms of the HMGB1/RAGE axis in tumors is of great importance, and the development of inhibitors targeting this axis warrants further exploration.

11.
Foods ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38472821

RESUMEN

Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating preservative on fresh T. fuciformis. The findings revealed that the ε-PL + chitosan composite coating preservative effectively delayed the development of diseases and reduced weight loss during storage compared to the control group. Furthermore, this treatment significantly decreased the respiration rate of T. fuciformis and the activity of respiratory metabolism-related enzymes, such as alternative oxidase (AOX), cytochrome c oxidase (CCO), succinic dehydrogenase (SDH), 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase (6-PGDH and G-6-PDH). Additionally, the composite coating preservative also delayed the depletion of ATP and ADP and maintained higher levels of the energy charge while preserving low levels of AMP. It also sustained heightened activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase enzymes. These results demonstrate that utilizing the ε-PL + chitosan composite coating preservative can serve as a sufficiently safe and efficient method for prolonging the shelf life of post-harvest fresh T. fuciformis.

12.
Water Res ; 257: 121673, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688189

RESUMEN

Wetlands cover only around 6 % of the Earth's land surface, and are recognized as one of the three major ecosystems, alongside forests and oceans. The ecological structure and function of karst wetlands are unique due to the influence of geologic structure. At present, the unclear spectral morphology of surface water in karst wetlands poses a significant challenge in remote sensing estimation of non-optically active water quality parameters (NAWQPs). This study proposed a novel multi-scale spectral morphology feature extraction (MSFE) method to insight to spectral characteristics in surface water of karst wetlands, and further screen the sensitive features of NAWQPs. Then we constructed three remote sensing inversion strategies for NAWQPs (TN, TP, NH3_N, DO), including direct estimation, indirect estimation, and auxiliary estimation. Finally, we constructed a novel pH-based hierarchical analysis framework (pH_HA) to thoroughly explore the influence of alkalinity-biased characteristics of karst water on the spectral domain of NAWQPs and its estimation accuracy using in-situ hyperspectral data, respectively. We found that the spectral characteristics of karst waters at the first reflectance peak (580 nm) differed significantly from other water body types. The MSFE successfully captured the sensitive spectral domains for NAWQPs, and focused on between 500 and 600 nm and 900-960 nm. The sensitive features captured by MSFE improved estimation accuracy of NAWQPs (R2 >0.9). Direct estimation presented more stable performance compared to the auxiliary estimation (average RMSE of 0.366 mg/L), and the auxiliary estimation model further improved the retrieval accuracy of TN compared to direct estimation model (R2 increasing from 0.43 to 0.56). The novel hierarchical framework clearly revealed the notable changes in the sensitive spectral domains of NAWQPs under different pH values, and enabled more precise determination of spectral subdomains of NAWQPs, and identified the optimal spectral features. The pH_HA framework effectively improved the estimation accuracy of NAWQPs (R2 increased from 0.514 to over 0.9), and the estimation accuracies (R2) of four NAWQPs were all more than 0.9 when the pH value was over 8.5. Our works provide an effective approach for monitoring water quality in karst wetlands.


Asunto(s)
Humedales , Monitoreo del Ambiente/métodos , Calidad del Agua , Tecnología de Sensores Remotos , Análisis Espectral/métodos , Agua/química
13.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731693

RESUMEN

Gas chromatography-ion mobility spectroscopy (GC-IMS) was used to analyze the volatile components in dried Hypsizygus marmoreus of different drying methods, including hot air drying (HAD), heat pump drying (HPD), heated freeze-drying (HFD), and unheated freeze-drying (UFD). A total of 116 signal peaks corresponding to 96 volatile compounds were identified, including 25 esters, 24 aldehydes, 23 alcohols, 13 ketones, 10 heterocyclic compounds, 8 carboxylic acids, 7 terpenes, 3 sulfur-containing compounds, 2 nitrogen-containing compounds, and 1 aromatic hydrocarbon. The total content of volatile compounds in H. marmoreus dried by the four methods, from highest to lowest, was as follows: HAD, HPD, HFD, and UFD. The main volatile compounds included carboxylic acids, alcohols, esters, and aldehydes. Comparing the peak intensities of volatile compounds in dried H. marmoreus using different drying methods, it was found that the synthesis of esters, aldehydes, and terpenes increased under hot drying methods such as HAD and HPD, while the synthesis of compounds containing sulfur and nitrogen increased under freeze-drying methods such as HFD and UFD. Nine common key characteristic flavor compounds of dried H. marmoreus were screened using relative odor activity values (ROAV > 1), including ethyl 3-methylbutanoate, acetic acid, 2-methylbutanal, propanal, methyl 2-propenyl sulfate, trimethylamine, 3-octanone, acetaldehide, and thiophene. In the odor description of volatile compounds with ROAV > 0.1, it was found that important flavor components such as trimethylamine, 3-octanone, (E)-2-octenal, and dimethyl disulfide are related to the aroma of seafood. Their ROAV order is HFD > UFD > HPD > HAD, indicating that H. marmoreus using the HFD method have the strongest seafood flavor. The research findings provide theoretical guidance for selecting drying methods and refining the processing of H. marmoreus.

14.
Food Res Int ; 186: 114331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729716

RESUMEN

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Asunto(s)
Antioxidantes , Frío , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prunus persica , Especies Reactivas de Oxígeno , Transducción de Señal , Trehalosa , Trehalosa/farmacología , Trehalosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simulación del Acoplamiento Molecular , Malondialdehído/metabolismo
15.
Eur J Med Res ; 29(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173013

RESUMEN

BACKGROUND: Female fertility declines with increased maternal age, and this decline is even more rapid after the age of 35 years. Follicular fluid (FF) is a crucial microenvironment that plays a significant role in the development of oocytes, permits intercellular communication, and provides the oocytes with nutrition. Exosomes have emerged as being important cell communication mediators that are linked to age-related physiological and pathological conditions. However, the metabolomic profiling of FF derived exosomes from advanced age females are still lacking. METHODS: The individuals who were involved in this study were separated into two different groups: young age with a normal ovarian reserve and advanced age. The samples were analysed by using gas chromatography-time of flight mass spectrometry (GC-TOFMS) analysis. The altered metabolites were analysed by using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the functions and pathways that were involved. RESULTS: Our data showed that metabolites in exosomes from FF were different between women of young age and women of advanced age. The set of 17 FF exosomal metabolites (P ≤ 0.05) may be biomarkers to differentiate between the two groups. Most of these differentially expressed metabolites in FF were closely involved in the regulation of oocyte number and hormone levels. CONCLUSIONS: In this study, we identified differences in the metabolites of exosomes from FF between women of young age and women of advanced age. These different metabolites were tightly related to oocyte count and hormone levels. Importantly, these findings elucidate the metabolites of the FF exosomes and provide a better understanding of the nutritional profiles of the follicles with age.


Asunto(s)
Exosomas , Líquido Folicular , Femenino , Humanos , Adulto , Líquido Folicular/química , Líquido Folicular/metabolismo , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Hormonas/análisis , Hormonas/metabolismo
16.
J Plant Physiol ; 300: 154297, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945071

RESUMEN

Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.


Asunto(s)
Malatos , Nicotiana , Estrés Oxidativo , Especies Reactivas de Oxígeno , Estrés Oxidativo/efectos de los fármacos , Malatos/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , Mitocondrias/metabolismo , Malondialdehído/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Plant Physiol Biochem ; 208: 108480, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437751

RESUMEN

It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.


Asunto(s)
Brassica , Brassica/genética , Citocromos f/metabolismo , Manosa/metabolismo , Manosa/farmacología , Nicotiana/genética , Apoptosis , Clorofila/metabolismo
18.
CNS Neurosci Ther ; 30(4): e14713, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615362

RESUMEN

AIMS: We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS: The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS: LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION: We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.


Asunto(s)
Disfunción Cognitiva , Propionatos , Esquizofrenia , Animales , Ratones , Ratas , Fenciclidina , Esquizofrenia/complicaciones , Esquizofrenia/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Isoxazoles
19.
Adv Mater ; 36(30): e2404774, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38721927

RESUMEN

Green ammonia synthesis through electrocatalytic nitrate reduction reaction (eNO3RR) can serve as an effective alternative to the traditional energy-intensive Haber-Bosch process. However, achieving high Faradaic efficiency (FE) at industrially relevant current density in neutral medium poses significant challenges in eNO3RR. Herein, with the guidance of theoretical calculation, a metallic CoNi-terminated catalyst is successfully designed and constructed on copper foam, which achieves an ammonia FE of up to 100% under industrial-level current density and very low overpotential (-0.15 V versus reversible hydrogen electrode) in a neutral medium. Multiple characterization results have confirmed that the maintained metal atom-terminated surface through interaction with copper atoms plays a crucial role in reducing overpotential and achieving high current density. By constructing a homemade gas stripping and absorption device, the complete conversion process for high-purity ammonium nitrate products is demonstrated, displaying the potential for practical application. This work suggests a sustainable and promising process toward directly converting nitrate-containing pollutant solutions into practical nitrogen fertilizers.

20.
Eur J Pharmacol ; 965: 176307, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160930

RESUMEN

OBJECTIVE: Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Trimethylamine N-oxide (TMAO) has emerged as a crucial risk factor in cardiovascular diseases, inducing vascular inflammation and calcification. We aimed to evaluate the effect of TMAO on the formation of AAA. APPROACH AND RESULTS: Here, we showed that TMAO was elevated in plasma from AAA patients compared with nonaneurysmal subjects by liquid chromatography‒mass spectrometry (LC‒MS) detection. Functional studies revealed that increased TMAO induced by feeding a choline-supplemented diet promoted Ang II-induced AAA formation. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analyses revealed that TMAO induced macrophage infiltration and inflammatory factor release. Conversely, inhibition of TMAO by supplementation with DMB suppressed AAA formation and the inflammatory response. Molecular studies revealed that TMAO regulated VSMC phenotypic switching. Flow cytometry analyses showed that TMAO induces macrophage M1-type polarization. Furthermore, pharmacological intervention experiments suggested that the nuclear factor-κB (NF-κB) signaling pathway was critical for TMAO to trigger AAA formation. CONCLUSIONS: TMAO promotes AAA formation by inducing vascular inflammation and VSMC phenotypic switching through activation of the NF-κB signaling pathway. Thus, TMAO is a prospective therapeutic AAA target.


Asunto(s)
Aneurisma de la Aorta Abdominal , Metilaminas , FN-kappa B , Humanos , Animales , FN-kappa B/metabolismo , Músculo Liso Vascular , Aneurisma de la Aorta Abdominal/patología , Inflamación/metabolismo , Miocitos del Músculo Liso , Angiotensina II/farmacología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA