Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Basic Res Cardiol ; 116(1): 13, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33630168

RESUMEN

Atrial fibrillation (AF) is associated with electrical remodeling, leading to cellular electrophysiological dysfunction and arrhythmia perpetuation. Emerging evidence suggests a key role for epigenetic mechanisms in the regulation of ion channel expression. Histone deacetylases (HDACs) control gene expression through deacetylation of histone proteins. We hypothesized that class I HDACs in complex with neuron-restrictive silencer factor (NRSF) determine atrial K+ channel expression. AF was characterized by reduced atrial HDAC2 mRNA levels and upregulation of NRSF in humans and in a pig model, with regional differences between right and left atrium. In vitro studies revealed inverse regulation of Hdac2 and Nrsf in HL-1 atrial myocytes. A direct association of HDAC2 with active regulatory elements of cardiac K+ channels was revealed by chromatin immunoprecipitation. Specific knock-down of Hdac2 and Nrsf induced alterations of K+ channel expression. Hdac2 knock-down resulted in prolongation of action potential duration (APD) in neonatal rat cardiomyocytes, whereas inactivation of Nrsf induced APD shortening. Potential AF-related triggers were recapitulated by experimental tachypacing and mechanical stretch, respectively, and exerted differential effects on the expression of class I HDACs and K+ channels in cardiomyocytes. In conclusion, HDAC2 and NRSF contribute to AF-associated remodeling of APD and K+ channel expression in cardiomyocytes via direct interaction with regulatory chromatin regions. Specific modulation of these factors may provide a starting point for the development of more individualized treatment options for atrial fibrillation.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/enzimología , Epigénesis Genética , Atrios Cardíacos/enzimología , Frecuencia Cardíaca , Histona Desacetilasa 2/metabolismo , Miocitos Cardíacos/enzimología , Canales de Potasio/metabolismo , Proteínas Represoras/metabolismo , Adulto , Anciano , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Remodelación Atrial , Estudios de Casos y Controles , Línea Celular , Modelos Animales de Enfermedad , Femenino , Atrios Cardíacos/fisiopatología , Histona Desacetilasa 2/genética , Humanos , Masculino , Persona de Mediana Edad , Canales de Potasio/genética , Proteínas Represoras/genética , Sus scrofa , Factores de Tiempo
2.
Cell Physiol Biochem ; 49(1): 65-77, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30134221

RESUMEN

BACKGROUND/AIMS: Cardiac arrhythmias are triggered by environmental stimuli that may modulate expression of cardiac ion channels. Underlying epigenetic regulation of cardiac electrophysiology remains incompletely understood. Histone deacetylases (HDACs) control gene expression and cardiac integrity. We hypothesized that class I/II HDACs transcriptionally regulate ion channel expression and determine action potential duration (APD) in cardiac myocytes. METHODS: Global class I/II HDAC inhibition was achieved by administration of trichostatin A (TSA). HDAC-mediated effects on K+ channel expression and electrophysiological function were evaluated in murine atrial cardiomyocytes (HL-1 cells) using real-time PCR, Western blot, and patch clamp analyses. Electrical tachypacing was employed to recapitulate arrhythmia-related effects on ion channel remodeling in the absence and presence of HDAC inhibition. RESULTS: Global HDAC inhibition increased histone acetylation and prolonged APD90 in atrial cardiomyocytes compared to untreated control cells. Transcript levels of voltage-gated or inwardly rectifying K+ channels Kcnq1, Kcnj3 and Kcnj5 were significantly reduced, whereas Kcnk2, Kcnj2 and Kcnd3 mRNAs were upregulated. Ion channel remodeling was similarly observed at protein level. Short-term tachypacing did not induce significant transcriptional K+ channel remodeling. CONCLUSION: The present findings link class I/II HDAC activity to regulation of ion channel expression and action potential duration in atrial cardiomyocytes. Clinical implications for HDAC-based antiarrhythmic therapy and cardiac safety of HDAC inhibitors require further investigation.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/metabolismo , Animales , Línea Celular , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Med Sci Sports Exerc ; 54(3): 388-398, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34690286

RESUMEN

PURPOSE: This study aimed to assess if one bout of concentric/eccentric exercise with damaging eccentric overload (CON/ECC+) provides a sufficient stimulus to induce SC activation, proliferation, and differentiation. METHODS: Biopsies from the vastus lateralis muscle of recreationally active men were obtained in the rested condition and again from the contralateral leg 7 d after exhaustive concentric/eccentric (CON/ECC) (n = 15) or CON/ECC+ (n = 15) leg extension exercise and in a nonexercising control group (CG) (n = 10). Total SC number (Pax7+), activated (Pax7+/MyoD+), and differentiating (myogenin+) SCs, fiber type distribution, and myofibers expressing neonatal myosin heavy chain (MHCneo) were determined immunohistochemically. Creatine kinase and myoglobin were measured in venous blood. Isokinetic strength tests were repeatedly conducted. RESULTS: Significant increases in creatine kinase and myoglobin (P = 0.001) indicated myofiber damage, whereas maximal strength was not impaired. Only after CON/ECC+, SC content (P = 0.019) and SC related to type II fibers (P = 0.011) were significantly increased. A significant increase in the proportion of activated SCs occurred after CON/ECC+ only (P = 0.003), the increase being significantly (P < 0.05) different from the changes after CON/ECC and in CG. The number of differentiating SC and MHCneo remained unchanged. CONCLUSIONS: Eccentric overload during leg extension exercise induced significant SC activation, increases in SC content and in SC number related to type II myofibers. However, there were no signs of increased SC differentiation or formation of new myofibers.


Asunto(s)
Contracción Muscular/fisiología , Músculo Cuádriceps/fisiología , Entrenamiento de Fuerza/métodos , Células Satélite del Músculo Esquelético/fisiología , Adolescente , Adulto , Humanos , Masculino , Adulto Joven
4.
J Rehabil Med ; 53(2): jrm00153, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33569607

RESUMEN

OBJECTIVE: Recovery of the quadriceps femoris muscle after anterior ligament reconstruction is im-paired. The aim of this study was to investigate satellite cell content and function of the vastus lateralis muscle after anterior ligament reconstruction. METHODS: Biopsies were obtained from the vastus lateralis muscle of 16 recreational athletes immediately before and again 12 weeks after anterior ligament reconstruction. Total satellite cell number (Pax7+), activated (Pax7+/MyoD+), differentiating (Pax7-/MyoD+), and apoptotic (Pax7+/TUNEL+) satellite cells, myofibers expressing myosin heavy chain (MHC) I and II, and neonatal MHC (MHCneo) were determined immunohistochemically. RESULTS: After anterior ligament reconstruction, the number of apoptotic satellite cells was significantly (p = 0.019) increased, concomitant with a significant (p < 0.001) decrease in total satellite cell number, with no change in activated and differentiating satellite cell number. MHCneo+ myofibers tended towards an increase. CONCLUSION: Satellite cell apoptosis and the reduction in the satellite cell pool might provide an explanation for prolonged quadriceps muscle atrophy after anterior ligament reconstruction.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/métodos , Músculo Cuádriceps/fisiopatología , Células Satélite del Músculo Esquelético/fisiología , Adulto , Apoptosis , Femenino , Humanos , Masculino , Atrofia Muscular , Voluntarios
5.
Med Sci Sports Exerc ; 50(6): 1152-1161, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29389836

RESUMEN

PURPOSE: Protracted quadriceps muscle atrophy is observed after anterior cruciate ligament reconstruction (ACL-R). The aim of this study was to assess if quadriceps strength training with eccentric overload (CON/ECC) is more efficient to induce muscle regeneration after ACL-R than conventional concentric/eccentric (CON/ECC) strength training. METHODS: Biopsies from the vastus lateralis muscle were obtained from 37 recreational athletes after 12 wk of regular rehabilitation after ACL-R and again after 12 wk with twice a week of either conventional CON/ECC (n = 16) or CON/ECC (n = 21) one-legged supervised leg-press training. Immunohistochemical analyses were used to determine satellite cell (SC) number (Pax7); activated SC number (Pax7/MyoD); fibers expressing myosin heavy-chain (MHC) I and II, MHC neonatal, and fiber cross-sectional area. Magnetic resonance imaging was performed to measure quadriceps cross-sectional area and isokinetic testing for the measurement of quadriceps strength. RESULTS: CON/ECC induced a significantly (P = 0.002) greater increase in quadriceps cross-sectional area than did CON/ECC. There also was a significant increase in the fiber cross-sectional areas of all fiber types and in quadriceps strength, but without significant difference between training groups. Only CON/ECC training led to a significant (P < 0.05) increase in percent type I fibers. After training, the number of MHC I/MHCneo fibers was significantly (P < 0.05) greater in the CON/ECC than after in the CON/ECC group. The proportion of hybrid fibers tended to decrease in both groups; percent type II fibers, SC number, and activated SC number remained unchanged. CONCLUSIONS: CON/ECC leads to significantly greater muscle hypertrophy compared with CON/ECC, but without the hypothesized enhancing effect on SC activation. At the same time, CON/ECC+ induces a less favorable slower muscle phenotype for strong and fast movements.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/rehabilitación , Músculo Cuádriceps/crecimiento & desarrollo , Regeneración , Entrenamiento de Fuerza/métodos , Adulto , Atletas , Biopsia , Femenino , Humanos , Masculino , Fuerza Muscular , Cadenas Pesadas de Miosina/metabolismo , Células Satélite del Músculo Esquelético/citología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA