Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 33(4): 5755-5771, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30699302

RESUMEN

The antibiotic bacitracin (Bac) inhibits cell wall synthesis of gram-positive bacteria. Here, we discovered a totally different activity of Bac: the neutralization of bacterial exotoxins. Bac prevented intoxication of mammalian cells with the binary enterotoxins Clostridium botulinum C2, C. perfringens ι, C. difficile transferase (CDT), and Bacillus anthracis lethal toxin. The transport (B) subunits of these toxins deliver their respective enzyme (A) subunits into cells. Following endocytosis, the B subunits form pores in membranes of endosomes, which mediate translocation of the A subunits into the cytosol. Bac inhibited formation of such B pores in lipid bilayers in vitro and in living cells, thereby preventing translocation of the A subunit into the cytosol. Bac preserved the epithelial integrity of toxin-treated CaCo-2 monolayers, a model for the human gut epithelium. In conclusion, Bac should be discussed as a therapeutic option against infections with medically relevant toxin-producing bacteria, including C. difficile and B. anthracis, because it inhibits bacterial growth and neutralizes the secreted toxins.-Schnell, L., Felix, I., Müller, B., Sadi, M., von Bank, F., Papatheodorou, P., Popoff, M. R., Aktories, K., Waltenberger, E., Benz, R., Weichbrodt, C., Fauler, M., Frick, M., Barth, H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication.


Asunto(s)
Antibacterianos/farmacología , Bacitracina/farmacología , Toxinas Bacterianas/metabolismo , Sustancias Protectoras/farmacología , Animales , Antígenos Bacterianos/metabolismo , Bacillus anthracis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Clostridioides difficile/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Exotoxinas/metabolismo , Células HeLa , Humanos , Membrana Dobles de Lípidos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Células Vero
2.
Biophys J ; 111(6): 1223-1234, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653481

RESUMEN

The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide ß-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an "open" channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.


Asunto(s)
Canal Aniónico 1 Dependiente del Voltaje/química , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Cationes/química , Escherichia coli , Humanos , Potenciales de la Membrana/fisiología , Membranas Artificiales , Ratones , Micelas , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Conformación Proteica , Liposomas Unilamelares/química , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(12): 4586-91, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23426625

RESUMEN

Multicellular organisms fight bacterial and fungal infections by producing peptide-derived broad-spectrum antibiotics. These host-defense peptides compromise the integrity of microbial cell membranes and thus evade pathways by which bacteria develop rapid antibiotic resistance. Although more than 1,700 host-defense peptides have been identified, the structural and mechanistic basis of their action remains speculative. This impedes the desired rational development of these agents into next-generation antibiotics. We present the X-ray crystal structure as well as solid-state NMR spectroscopy, electrophysiology, and MD simulations of human dermcidin in membranes that reveal the antibiotic mechanism of this major human antimicrobial, found to suppress Staphylococcus aureus growth on the epidermal surface. Dermcidin forms an architecture of high-conductance transmembrane channels, composed of zinc-connected trimers of antiparallel helix pairs. Molecular dynamics simulations elucidate the unusual membrane permeation pathway for ions and show adjustment of the pore to various membranes. Our study unravels the comprehensive mechanism for the membrane-disruptive action of this mammalian host-defense peptide at atomistic level. The results may form a foundation for the structure-based design of peptide antibiotics.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Canales Iónicos/química , Canales Iónicos/farmacología , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Péptidos/química , Péptidos/farmacología , Cristalografía por Rayos X , Humanos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
4.
Analyst ; 140(14): 4874-81, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25834843

RESUMEN

In general, the method of choice to characterize the conductance properties of channel-forming bacterial porins is electrophysiology. Here, the classical method is to reconstitute single porins into planar lipid bilayers to derive functional information from the observed channel conductance. In addition to an estimated pore size, ion selectivity or transport properties in general are of importance. For the latter, measuring the ion current fluctuation can provide some information about the mode of transport of charged molecules penetrating the proteins. For instance, increasing the external voltage modifies the residence time in the channel: charged molecules with the ability to permeate through channels will travel faster whereas non-permeating molecules get pushed to the constriction zone with enhanced residence time. Here, we are interested in the ability of antibiotics to permeate channels and compare different techniques to reveal fast events.


Asunto(s)
Antibacterianos/farmacocinética , Membrana Dobles de Lípidos , Porinas/metabolismo , Transporte Biológico , Microelectrodos
5.
Phys Chem Chem Phys ; 16(20): 9546-55, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24728177

RESUMEN

The voltage-dependent anion channel (VDAC) is a transmembrane protein that regulates the transfer of metabolites between the cytosol and the mitochondrium. Opening and partial closing of the channel is known to be driven by the transmembrane potential via a mechanism that is not fully understood. In this work, we employed a spectroelectrochemical approach to probe the voltage-induced molecular structure changes of human VDAC1 (hVDAC1) embedded in a tethered bilayer lipid membrane on a nanostructured Au electrode. The model membrane consisted of a mixed self-assembled monolayer of 6-mercaptohexanol and (cholesterylpolyethylenoxy)thiol, followed by the deposition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine vesicles including hVDAC1. The stepwise assembly of the model membrane and the incorporation of hVDAC1 were monitored by surface enhanced infrared absorption and electrochemical impedance spectroscopy. Difference spectra allowed for identifying the spectral changes which may be associated with the transition from the open to the "closed" states by shifting the potential above or below the transmembrane potential determined to be ca. 0.0 V vs. the open circuit potential. These spectral changes were interpreted on the basis of the orientation- and distance-dependent IR enhancement and indicate alterations of the inclination angle of the ß-strands as crucial molecular events, reflecting an expansion or contraction of the ß-barrel pore. These protein structural changes that do not confirm nor exclude the reorientation of the α-helix are either directly induced by the electric field or a consequence of a potential-dependent repulsion or attraction of the bilayer.


Asunto(s)
Membrana Celular/metabolismo , Espectroscopía Dieléctrica , Electricidad , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja , Propiedades de Superficie
6.
Chem Sci ; 15(24): 9333-9344, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903220

RESUMEN

Bacterial membrane porins facilitate the translocation of small molecules while restricting large molecules, and this mechanism remains elusive at the molecular level. Here, we investigate the selective uptake of large cyclic sugars across an unusual passive membrane transporter, CymA, comprising a charged zone and a constricting N terminus segment. Using a combination of electrical recordings, protein mutagenesis and molecular dynamics simulations, we establish substrate translocation across CymA governed by the electrostatic pore properties and conformational dynamics of the constriction segment. Notably, we show that the variation in pH of the environment resulted in reversible modulation of the substrate binding site in the pore, thereby regulating charge-selective transport of cationic, anionic and neutral cyclic sugars. The quantitative kinetics of cyclic sugar translocation across CymA obtained in electrical recordings at different pHs are comparable with molecular dynamics simulations that revealed the transport pathway, energetics and favorable affinity sites in the pore for substrate binding. We further define the molecular basis of cyclic sugar translocation and establish that the constriction segment is flexible and can reside inside or outside the pore, regulating substrate translocation distinct from the ligand-gated transport mechanism. Our study provides novel insights into energy-independent large molecular membrane transport for targeted drug design strategies.

7.
Methods Mol Biol ; 2188: 67-92, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33119847

RESUMEN

Artificial lipid bilayers have been used for several decades to study channel-forming pores and ion channels in membranes. Until recently, the classical two-chamber setups have been primarily used for studying the biophysical properties of pore forming proteins. Within the last 10 years, instruments for automated lipid bilayer measurements have been developed and are now commercially available. This chapter focuses on protein purification and reconstitution of channel-forming proteins into lipid bilayers using a classic setup and on the commercially available systems, the Orbit mini and Orbit 16.


Asunto(s)
Electrofisiología/instrumentación , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenómenos Electrofisiológicos , Diseño de Equipo , Escherichia coli/genética , Expresión Génica , Humanos , Canales Iónicos/genética , Dispositivos Laboratorio en un Chip , Membrana Dobles de Lípidos/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mutación Puntual , Porinas/genética , Porinas/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA