Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 599(7883): 102-107, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34616039

RESUMEN

Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Muerte Celular/efectos de los fármacos , Lípidos/química , Lípidos/toxicidad , Animales , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/toxicidad , Elongasas de Ácidos Grasos/deficiencia , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neurotoxinas/química , Neurotoxinas/toxicidad
2.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826303

RESUMEN

2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.

3.
Front Mol Neurosci ; 16: 1305949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38240014

RESUMEN

Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together "TIC." This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.

4.
Neuron ; 111(22): 3604-3618.e11, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657440

RESUMEN

Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.


Asunto(s)
Factores de Transcripción ARNTL , Esclerosis Múltiple , Ratones , Animales , Factores de Transcripción ARNTL/genética , Privación de Sueño/metabolismo , Ratones Noqueados , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Esclerosis Múltiple/metabolismo , Sueño/genética , Diferenciación Celular
5.
Nat Commun ; 11(1): 3753, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719333

RESUMEN

Reactive astrocytes have been implicated in the pathogenesis of neurodegenerative diseases, including a non-cell autonomous effect on motor neuron survival in ALS. We previously defined a mechanism by which microglia release three factors, IL-1α, TNFα, and C1q, to induce neurotoxic astrocytes. Here we report that knocking out these three factors markedly extends survival in the SOD1G93A ALS mouse model, providing evidence for gliosis as a potential ALS therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Astrocitos/metabolismo , Complemento C1q/metabolismo , Progresión de la Enfermedad , Interleucina-1alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Complemento C3/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía , Superóxido Dismutasa-1/metabolismo
6.
Cell Rep ; 31(12): 107776, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579912

RESUMEN

Glaucoma is a neurodegenerative disease that features the death of retinal ganglion cells (RGCs) in the retina, often as a result of prolonged increases in intraocular pressure. We show that preventing the formation of neuroinflammatory reactive astrocytes prevents the death of RGCs normally seen in a mouse model of glaucoma. Furthermore, we show that these spared RGCs are electrophysiologically functional and thus still have potential value for the function and regeneration of the retina. Finally, we demonstrate that the death of RGCs depends on a combination of both an injury to the neurons and the presence of reactive astrocytes, suggesting a model that may explain why reactive astrocytes are toxic only in some circumstances. Altogether, these findings highlight reactive astrocytes as drivers of RGC death in a chronic neurodegenerative disease of the eye.


Asunto(s)
Astrocitos/patología , Neuronas/patología , Neurotoxinas/toxicidad , Retina/lesiones , Retina/patología , Animales , Axones/efectos de los fármacos , Axones/patología , Muerte Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Complemento C1q/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Modelos Animales de Enfermedad , Glaucoma/complicaciones , Glaucoma/patología , Glaucoma/fisiopatología , Gliosis/complicaciones , Gliosis/patología , Gliosis/fisiopatología , Interleucina-1/metabolismo , Presión Intraocular , Ratones Noqueados , Microesferas , Neuronas/efectos de los fármacos , Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA