Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 63(2): 209-223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37818798

RESUMEN

Cyclin dependent kinase 4 and 6 inhibitors such as abemaciclib are routinely used to treat metastatic estrogen receptor positive (ER+) breast cancer. However, adaptive mechanisms inhibit their effectiveness and allow for disease progression. Using ER+ breast cancer cell models, we show that acquired resistance to abemaciclib is accompanied by increase in metastatic potential. Mass spectrometry-based proteomics from abemaciclib sensitive and resistant cells showed that lysosomal proteins including CTSD (cathepsin D), cathepsin A and CD68 were significantly increased in resistant cells. Combination of abemaciclib and a lysosomal destabilizer, such as hydroxychloroquine (HCQ) or bafilomycin A1, resensitized resistant cells to abemaciclib. Also, combination of abemaciclib and HCQ decreased migration and invasive potential and increased lysosomal membrane permeability in resistant cells. Prosurvival B cell lymphoma 2 (BCL2) protein levels were elevated in resistant cells, and a triple treatment with abemaciclib, HCQ, and BCL2 inhibitor, venetoclax, significantly inhibited cell growth compared to treatment with abemaciclib and HCQ. Furthermore, resistant cells showed increased levels of Transcription Factor EB (TFEB), a master regulator of lysosomal-autophagy genes, and siRNA mediated knockdown of TFEB decreased invasion in resistant cells. TFEB was found to be mutated in a subset of invasive human breast cancer samples, and overall survival analysis in ER+, lymph node-positive breast cancer showed that increased TFEB expression correlated with decreased survival. Collectively, we show that acquired resistance to abemaciclib leads to increased metastatic potential and increased levels of protumorigenic lysosomal proteins. Therefore, the lysosomal pathway could be a therapeutic target in advanced ER+ breast cancer.


Asunto(s)
Aminopiridinas , Bencimidazoles , Neoplasias de la Mama , Proteínas , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Lisosomas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
J Virol ; 96(7): e0005722, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35319225

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Heparina/análogos & derivados , Línea Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamiento del Gen , Glucuronidasa/genética , Glucuronidasa/metabolismo , Heparina/uso terapéutico , Humanos , Inmunidad/efectos de los fármacos , Inflamación , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , FN-kappa B , SARS-CoV-2
3.
J Biol Chem ; 296: 100403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33577798

RESUMEN

Uveal melanoma (UM) is the most common intraocular tumor in adults. Nearly half of UM patients develop metastatic disease and often succumb within months because effective therapy is lacking. A novel therapeutic approach has been suggested by the discovery that UM cell lines driven by mutant constitutively active Gq or G11 can be targeted by FR900359 (FR) or YM-254890, which are bioavailable, selective inhibitors of the Gq/11/14 subfamily of heterotrimeric G proteins. Here, we have addressed the therapeutic potential of FR for UM. We found that FR inhibited all oncogenic Gq/11 mutants reported in UM. FR arrested growth of all Gq/11-driven UM cell lines tested, but induced apoptosis only in a few. Similarly, FR inhibited growth of, but did not efficiently kill, UM tumor cells from biopsies of primary or metastatic tumors. FR evoked melanocytic redifferentiation of UM tumor cells with low (class 1), but not high (class 2), metastatic potential. FR administered systemically below its LD50 strongly inhibited growth of PDX-derived class 1 and class 2 UM tumors in mouse xenograft models and reduced blood pressure transiently. FR did not regress xenografted UM tumors or significantly affect heart rate, liver function, hematopoiesis, or behavior. These results indicated the existence of a therapeutic window in which FR can be explored for treating UM and potentially other diseases caused by constitutively active Gq/11.


Asunto(s)
Depsipéptidos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Neoplasias Hepáticas/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Neoplasias de la Úvea/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Metástasis de la Neoplasia , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Am J Pathol ; 191(2): 335-352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33181139

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax+), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax+, and Tax+/interferon-γ-/- mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax+ and Tax+/interferon-γ-/- malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80+ and anti-mouse CD11b (Mac-1)+ histiocytic cells predominated within the tumors. Three Tax+/interferon-γ-/- cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax+ mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.


Asunto(s)
Línea Celular Tumoral , Modelos Animales de Enfermedad , Genes pX , Infecciones por HTLV-I/complicaciones , Sarcoma Histiocítico , Animales , Carcinogénesis/genética , Sarcoma Histiocítico/patología , Sarcoma Histiocítico/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oncogenes , Osteólisis/patología , Osteólisis/virología
5.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29794156

RESUMEN

Integrin ß3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-angiogenic depends on the context in which it is expressed. To understand precisely ß3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the ß3-dependent adhesome. We show that depletion of ß3-integrin in this cell type leads to changes in microtubule behaviour that control cell migration. ß3-integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when ß3-integrin levels are reduced.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Integrina beta3/genética , Animales , Anexina A2/genética , Proteínas Cromosómicas no Histona/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular , Regulación de la Expresión Génica/genética , Humanos , Espectrometría de Masas , Ratones , Microtúbulos/genética , Microtúbulos/patología , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Proteína de Unión al GTP rac1/genética
6.
Nanomedicine ; 12(1): 201-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26515754

RESUMEN

Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvß3-Fum-PD NP). Dual anti-angiogenic therapy combining αvß3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvß3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvß3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvß3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvß3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvß3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvß3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Difosfonatos/administración & dosificación , Imidazoles/administración & dosificación , Integrina alfaVbeta3/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Profármacos/administración & dosificación , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Línea Celular Tumoral , Difusión , Difosfonatos/química , Imidazoles/química , Masculino , Terapia Molecular Dirigida/métodos , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Profármacos/química , Conejos , Resultado del Tratamiento , Ácido Zoledrónico
7.
Cancer Discov ; 14(4): 643-647, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571433

RESUMEN

SUMMARY: Understandably, conventional therapeutic strategies have focused on controlling primary tumors. We ask whether the cost of such strategies is actually an increased likelihood of metastatic relapse.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Microambiente Tumoral
8.
Clin Breast Cancer ; 24(4): 368-375.e2, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38443227

RESUMEN

BACKGROUND: Breast cancer, particularly the estrogen receptor positive (ER+) subtype, remains a leading cause of cancer-related death among women. Endocrine therapy is the most effective treatment for ER+ breast cancer; however, the development of resistance presents a significant challenge. This study explored the role of the breast cancer antiestrogen resistance 4 (BCAR4) gene as a potential driver of resistance and a pivotal biomarker in breast cancer. PATIENTS AND METHODS: The researchers undertook a comprehensive analysis of 1743 patients spanning 6 independent cohorts. They examined the association of BCAR4 expression with patient outcomes across all breast cancer types and the PAM50 molecular subtypes. The relationship between elevated BCAR4 expression and resistance to endocrine therapy including AIs, the prevailing standard-of-care for endocrine therapy, was also investigated. RESULTS: This meta-analysis corroborated the link between BCAR4 expression and adverse outcomes as well as resistance to endocrine therapy in breast cancer. Notably, BCAR4 expression is clinically significant in luminal A and B subtypes. Additionally, an association between BCAR4 expression and resistance to AI treatment was discerned. CONCLUSION: This study expands on previous findings by demonstrating that BCAR4 expression is associated with resistance to newer therapies. The identification of patients with intrinsic resistance to hormone therapy is crucial to avoid ineffective treatment strategies. These findings contribute to our understanding of endocrine therapy resistance in breast cancer and could potentially guide the development of more effective treatment strategies.


Asunto(s)
Antineoplásicos Hormonales , Biomarcadores de Tumor , Neoplasias de la Mama , Resistencia a Antineoplásicos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Receptores de Estrógenos/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante
9.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496506

RESUMEN

Adult T cell leukemia (ATL), caused by infection with human T cell leukemia virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T lead to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine RANKL, suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV injected over mouse calvaria in the presence of low dose RANKL caused more osteolysis than RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukemia.

10.
PLoS One ; 18(12): e0293700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117806

RESUMEN

BACKGROUND: Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models. METHODS: Gene expression was investigated by datamining in twelve publicly-available datasets. Dedicated Tissue microarrays (TMAs) were generated to evaluate matched primary and bone metastases as well as and pre and post chemotherapy tumors from the same patient. TMA were stained with the FDA-approved MRQ-48 antibody against TfR and graded by staining intensity (H-score). Patient-derived xenografts (PDX) and isogenic metastatic mouse models were used to study in vivo TfR expression and uptake of transferrin. RESULTS: TFRC gene and protein expression were high in breast cancer of all subtypes and stages, and in 60-85% of bone metastases. TfR was detectable after neoadjuvant chemotherapy, albeit with some variability. Fluorophore-conjugated transferrin iron chelator deferoxamine (DFO) enhanced TfR uptake in human breast cancer cells in vitro and proved transferrin localization at metastatic sites and correlation of tumor burden relative to untreated tumor mice. CONCLUSIONS: TfR is expressed in breast cancer, primary, metastatic, and after neoadjuvant chemotherapy. Variability in expression of TfR suggests that evaluation of the expression of TfR in individual patients could identify the best candidates for targeting. Further, systemic iron chelation with DFO may upregulate receptor expression and improve uptake of therapeutics or tracers that use transferrin as a homing ligand.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Quelantes , Expresión Génica , Terapia Molecular Dirigida , Receptores de Transferrina/metabolismo , Transferrina/metabolismo
11.
Cancer Discov ; 13(6): 1454-1477, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36883955

RESUMEN

Metastatic breast cancer is an intractable disease that responds poorly to immunotherapy. We show that p38MAPKα inhibition (p38i) limits tumor growth by reprogramming the metastatic tumor microenvironment in a CD4+ T cell-, IFNγ-, and macrophage-dependent manner. To identify targets that further increased p38i efficacy, we utilized a stromal labeling approach and single-cell RNA sequencing. Thus, we combined p38i and an OX40 agonist that synergistically reduced metastatic growth and increased overall survival. Intriguingly, patients with a p38i metastatic stromal signature had better overall survival that was further improved by the presence of an increased mutational load, leading us to ask if our approach would be effective in antigenic breast cancer. The combination of p38i, anti-OX40, and cytotoxic T-cell engagement cured mice of metastatic disease and produced long-term immunologic memory. Our findings demonstrate that a detailed understanding of the stromal compartment can be used to design effective antimetastatic therapies. SIGNIFICANCE: Immunotherapy is rarely effective in breast cancer. We dissected the metastatic tumor stroma, which revealed a novel therapeutic approach that targets the stromal p38MAPK pathway and creates an opportunity to unleash an immunologic response. Our work underscores the importance of understanding the tumor stromal compartment in therapeutic design. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Neoplasias , Ratones , Animales , Linfocitos T Citotóxicos , Linfocitos T CD4-Positivos , Inmunoterapia , Macrófagos , Microambiente Tumoral , Línea Celular Tumoral
12.
Integr Cancer Ther ; 21: 15347354221137285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36412916

RESUMEN

BACKGROUND: Chemotherapy is associated with decreased quality of life (QOL), fatigue, depression, and weight gain in patients with breast cancer. Weight gain is associated with poorer prognosis. Yoga improves QOL, fatigue, and mood in women with breast cancer but its effect on treatment-related weight gain has not been studied. The aim of this trial was to determine the feasibility of personalized yoga therapy in women receiving treatment for early-stage or locally advanced breast cancer and assess its impact on weight gain. METHODS: Thirty women were randomized 1:1 to receive yoga therapy by a certified yoga therapist during treatment or a control group. Participants in the yoga arm were asked to complete three 30 minute yoga sessions weekly (which included movement, breath work, mindfulness, and relaxation) throughout adjuvant or neoadjuvant chemotherapy (N = 29) or endocrine (N = 1); the control arm received breast cancer treatment without yoga. For comparability between participants randomized to yoga therapy, the single patient treated with endocrine therapy was excluded from the analysis. Primary outcomes were feasibility and weight change. Additional outcomes were mood, fatigue, QOL, serum tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein (CRP) as immune mediator biomarkers. RESULTS: Mean age was 51.6 years, 75.9% were white and 24.1% were people of color, reflecting the cancer center population. 80% had stage II-III disease. Enrollment was completed in 9 months. Compliance was lower than predicted; however, participants participated in on average 1.7 yoga sessions/week for a mean 15.6 weeks duration. There were no adverse events. Control arm participants gained on average 2.63% body weight during treatment while yoga participants lost 0.14% body weight (weight change = -0.36 in yoga arm vs. 2.89 in standard of care arm, Wilcoxon rank sum test P = .024). Control participants reported increased fatigue and decreased QOL, while yoga participants reported no change in QOL. No significant change in TNF-alpha or CRP was noted in either arm. CONCLUSION: This feasibility study suggests that personalized yoga therapy is beneficial for QOL and weight maintenance among women undergoing chemotherapy for early-stage or locally advanced breast cancer. Weight maintenance associated with yoga therapy may be of clinical significance in this population given the poorer prognosis associated with weight gain in breast cancer survivors. TRIAL REGISTRATION: NIH Clinicaltrials.gov #NCT03262831; August 25, 2017. https://clinicaltrials.gov/ct2/show/NCT03262831.


Asunto(s)
Neoplasias de la Mama , Yoga , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/complicaciones , Calidad de Vida , Factor de Necrosis Tumoral alfa , Fatiga/inducido químicamente , Fatiga/terapia , Peso Corporal , Aumento de Peso
13.
Blood Adv ; 6(7): 1991-2000, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-34555850

RESUMEN

Mobilized peripheral blood has become the primary source of hematopoietic stem cells for both autologous and allogeneic stem cell transplantation. Granulocyte colony-stimulating factor (G-CSF) is currently the standard agent used in the allogeneic setting. Despite the high mobilization efficacy in most donors, G-CSF requires 4-5 days of daily administration, and a small percentage of the donors fail to mobilize an optimal number of stem cells necessary for a safe allogeneic stem cell transplant. In this study, we retrospectively reviewed 1361 related allogeneic donors who underwent stem cell mobilization at Washington University. We compared the standard mobilization agent G-CSF with five alternative mobilization regimens, including GM-CSF, G-CSF+GM-CSF, GM-CSF + Plerixafor, Plerixafor and BL-8040. Cytokine-based mobilization strategies (G-CSF or in combination with GM-CSF) induce higher CD34 cell yield after 4-5 consecutive days of treatment, while CXCR4 antagonists (plerixafor and BL-8040) induce significantly less but rapid mobilization on the same day. Next, using a large dataset containing the demographic and baseline laboratory data from G-CSF-mobilized donors, we established machine learning (ML)-based scoring models that can be used to predict patients who may have less than optimal stem cell yields after a single leukapheresis session. To our knowledge, this is the first prediction model at the early donor screening stage, which may help identify allogeneic stem cell donors who may benefit from alternative approaches to enhance stem cell yields, thus ensuring safe and effective stem cell transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Antígenos CD34/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/farmacología , Humanos , Aprendizaje Automático , Estudios Retrospectivos
14.
Neurooncol Pract ; 9(3): 193-200, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35601970

RESUMEN

Background: Gliomas are the most common primary brain tumor in adults. Current treatments involve surgery, radiation, and temozolomide (TMZ) chemotherapy; however, prognosis remains poor and new approaches are required. Circadian medicine aims to maximize treatment efficacy and/or minimize toxicity by timed delivery of medications in accordance with the daily rhythms of the patient. We published a retrospective study showing greater anti-tumor efficacy for the morning, relative to the evening, administration of TMZ in patients with glioblastoma. We conducted this prospective randomized trial to determine the feasibility, and potential clinical impact, of TMZ chronotherapy in patients with gliomas (NCT02781792). Methods: Adult patients with gliomas (WHO grade II-IV) were enrolled prior to initiation of monthly TMZ therapy and were randomized to receive TMZ either in the morning (AM) before 10 am or in the evening (PM) after 8 pm. Pill diaries were recorded to measure compliance and FACT-Br quality of life (QoL) surveys were completed throughout treatment. Study compliance, adverse events (AE), and overall survival were compared between the two arms. Results: A total of 35 evaluable patients, including 21 with GBM, were analyzed (18 AM patients and 17 PM patients). Compliance data demonstrated the feasibility of timed TMZ dosing. There were no significant differences in AEs, QoL, or survival between the arms. Conclusions: Chronotherapy with TMZ is feasible. A larger study is needed to validate the effect of chronotherapy on clinical efficacy.

15.
FASEB J ; 24(4): 1117-27, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19933310

RESUMEN

The purpose of this work was to determine platelet and myeloid cell-specific requirements for beta3-containing integrins in hemostasis, bone resorption, and tumor growth. LoxP-flanked mice were generated to study the conditional deletion of beta3-integrin in platelets [knockout in platelets (KOP)] and myeloid cells [knockout in myeloid (KOM)]. Using the beta3KOP and beta3KOM strains of mice, we studied the role of beta3-integrin in hemostasis, bone resorption, and subcutaneous tumor growth. Tissue-specific deletion of platelet beta3-integrins in beta3KOP mice did not affect bone mass but resulted in a severe bleeding phenotype. No growth difference of tumor xenografts or in neoangiogenesis were found in beta3KOP mice, in contrast to the defects observed in germline beta3(-/-) mice. Conditional deletion of myeloid beta3-integrins in beta3KOM mice resulted in osteopetrosis but had no effect on hemostasis or mortality. Tumor growth in beta3KOM mice was increased and accompanied by decreased macrophage infiltration, without increase in blood vessel number. Platelet beta3-integrin deficiency was sufficient to disrupt hemostasis but had no effect on bone mass or tumor growth. Myeloid-specific beta3-integrin deletion was sufficient to perturb bone mass and enhance tumor growth due to reduced macrophage infiltration in the tumors. These results suggest that beta3-integrins have cell-specific roles in complex biological processes.-Morgan, E. A., Schneider, J. G., Baroni, T. E., Uluçkan, O., Heller, E., Hurchla, M. A., Deng, H., Floyd, D., Berdy, A., Prior, J. L., Piwnica-Worms, D., Teitelbaum, S. L., Ross, F. P., Weilbaecher, K. N. Dissection of platelet and myeloid cell defects by conditional targeting of the beta3-integrin subunit.


Asunto(s)
Plaquetas/metabolismo , Resorción Ósea/metabolismo , Hemostasis , Integrina beta3/metabolismo , Macrófagos/metabolismo , Melanoma/metabolismo , Animales , Plaquetas/patología , Resorción Ósea/genética , Resorción Ósea/patología , Línea Celular Tumoral , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/patología , Humanos , Integrina beta3/genética , Macrófagos/patología , Melanoma/genética , Melanoma/patología , Ratones , Ratones Noqueados , Trasplante de Neoplasias , Especificidad de Órganos/genética , Trasplante Heterólogo
16.
Proc Natl Acad Sci U S A ; 105(10): 3897-902, 2008 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-18322009

RESUMEN

NF-kappaB inducing kinase (NIK) is required for osteoclastogenesis in response to pathologic stimuli, and its loss leads to functional blockade of both alternative and classical NF-kappaB caused by cytoplasmic retention by p100. We now show that deletion of p100 restores the capacity of NIK-deficient osteoclast (OC) precursors to differentiate and normalizes RelB and p65 signaling. Differentiation of NIK-/- precursors is also restored by overexpression of RelB, but not p65. Additionally, RelB-/- precursors fail to form OCs in culture, and this defect is rescued by re-expression of RelB, but not by overexpression of p65. To further support the role of RelB in OCs, we challenged RelB-/- mice with TNF-alpha in vivo and found a diminished osteoclastogenic response. We then examined tumor-induced osteolysis in both RelB-/- and NIK-/- mice by using the B16 melanoma model. Growth of tumor cells in the bone marrow was similar to WT controls, but the absence of either RelB or NIK completely blocked the tumor-induced loss of trabecular bone. Thus, the alternative NF-kappaB pathway, culminating in activation of RelB, has a key and specific role in the differentiation of OCs that cannot be compensated for by p65.


Asunto(s)
Diferenciación Celular , Osteoclastos/citología , Osteoclastos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Factor de Transcripción ReIB/metabolismo , Animales , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Eliminación de Gen , Inmunidad Innata/efectos de los fármacos , Inflamación , Ratones , Ratones Endogámicos C57BL , Subunidad p52 de NF-kappa B/metabolismo , Neoplasias/patología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteólisis/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Ligando RANK/farmacología , Células Madre/citología , Células Madre/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIB/deficiencia , Factores de Necrosis Tumoral/farmacología , Quinasa de Factor Nuclear kappa B
17.
Mol Cancer Ther ; 20(6): 1183-1198, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33785647

RESUMEN

Breast cancer bone metastases are common and incurable. Tumoral integrin ß3 (ß3) expression is induced through interaction with the bone microenvironment. Although ß3 is known to promote bone colonization, its functional role during therapy of established bone metastases is not known. We found increased numbers of ß3+ tumor cells in murine bone metastases after docetaxel chemotherapy. ß3+ tumor cells were present in 97% of post-neoadjuvant chemotherapy triple-negative breast cancer patient samples (n = 38). High tumoral ß3 expression was associated with worse outcomes in both pre- and postchemotherapy triple-negative breast cancer groups. Genetic deletion of tumoral ß3 had minimal effect in vitro, but significantly enhanced in vivo docetaxel activity, particularly in the bone. Rescue experiments confirmed that this effect required intact ß3 signaling. Ultrastructural, transcriptomic, and functional analyses revealed an alternative metabolic response to chemotherapy in ß3-expressing cells characterized by enhanced oxygen consumption, reactive oxygen species generation, and protein production. We identified mTORC1 as a candidate for therapeutic targeting of this ß3-mediated, chemotherapy-induced metabolic response. mTORC1 inhibition in combination with docetaxel synergistically attenuated murine bone metastases. Furthermore, micelle nanoparticle delivery of mTORC1 inhibitor to cells expressing activated αvß3 integrins enhanced docetaxel efficacy in bone metastases. Taken together, we show that ß3 integrin induction by the bone microenvironment promotes resistance to chemotherapy through an altered metabolic response that can be defused by combination with αvß3-targeted mTORC1 inhibitor nanotherapy. Our work demonstrates the importance of the metastatic microenvironment when designing treatments and presents new, bone-specific strategies for enhancing chemotherapeutic efficacy.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Integrina beta3/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Docetaxel/farmacología , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Análisis de Supervivencia
18.
J Clin Invest ; 131(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520398

RESUMEN

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Asunto(s)
Arginasa/fisiología , Neoplasias de la Mama/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Tolerancia Inmunológica , Células Mieloides/enzimología , Microambiente Tumoral , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , AMP Cíclico/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL
19.
iScience ; 24(9): 103012, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34522855

RESUMEN

The gut microbiota's function in regulating health has seen it linked to disease progression in several cancers. However, there is limited research detailing its influence in breast cancer (BrCa). This study found that antibiotic-induced perturbation of the gut microbiota significantly increases tumor progression in multiple BrCa mouse models. Metagenomics highlights the common loss of several bacterial species following antibiotic administration. One such bacteria, Faecalibaculum rodentium, rescued this increased tumor growth. Single-cell transcriptomics identified an increased number of cells with a stromal signature in tumors, and subsequent histology revealed an increased abundance of mast cells in the tumor stromal regions. We show that administration of a mast cell stabilizer, cromolyn, rescues increased tumor growth in antibiotic treated animals but has no influence on tumors from control cohorts. These findings highlight that BrCa-microbiota interactions are different from other cancers studied to date and suggest new research avenues for therapy development.

20.
JCI Insight ; 5(17)2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32879136

RESUMEN

Obesity predisposes to cancer and a virtual universality of nonalcoholic fatty liver disease (NAFLD). However, the impact of hepatic steatosis on liver metastasis is enigmatic. We find that while control mice were relatively resistant to hepatic metastasis, those which were lipodystrophic or obese, with NAFLD, had a dramatic increase in breast cancer and melanoma liver metastases. NAFLD promotes liver metastasis by reciprocal activation initiated by tumor-induced triglyceride lipolysis in juxtaposed hepatocytes. The lipolytic products are transferred to cancer cells via fatty acid transporter protein 1, where they are metabolized by mitochondrial oxidation to promote tumor growth. The histology of human liver metastasis indicated the same occurs in humans. Furthermore, comparison of isolates of normal and fatty liver established that steatotic lipids had enhanced tumor-stimulating capacity. Normalization of glucose metabolism by metformin did not reduce steatosis-induced metastasis, establishing the process is not mediated by the metabolic syndrome. Alternatively, eradication of NAFLD in lipodystrophic mice by adipose tissue transplantation reduced breast cancer metastasis to that of control mice, indicating the steatosis-induced predisposition is reversible.


Asunto(s)
Lipólisis , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Femenino , Glucosa/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA