Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell Proteomics ; 19(10): 1586-1601, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32606017

RESUMEN

The Discoidin, CUB, and LCCL domain-containing protein (DCBLD) family consists of two type-I transmembrane scaffolding receptors, DCBLD1 and DCBLD2, which play important roles in development and cancer. The nonreceptor tyrosine kinases FYN and ABL are known to drive phosphorylation of tyrosine residues in YXXP motifs within the intracellular domains of DCBLD family members, which leads to the recruitment of the Src homology 2 (SH2) domain of the adaptors CT10 regulator of kinase (CRK) and CRK-like (CRKL). We previously characterized the FYN- and ABL-driven phosphorylation of DCBLD family YXXP motifs. However, we have identified additional FYN- and ABL-dependent phosphorylation sites on DCBLD1 and DCBLD2. This suggests that beyond CRK and CRKL, additional DCBLD interactors may be regulated by FYN and ABL activity. Here, we report a quantitative proteomics approach in which we map the FYN- and ABL-regulated interactomes of DCBLD family members. We found FYN and ABL regulated the binding of several signaling molecules to DCBLD1 and DCBLD2, including members of the 14-3-3 family of adaptors. Biochemical investigation of the DCBLD2/14-3-3 interaction revealed ABL-induced binding of 14-3-3 family members directly to DCBLD2.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Proteínas de la Membrana/química , Modelos Biológicos , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Mapas de Interacción de Proteínas
2.
PLoS Pathog ; 15(11): e1008100, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710650

RESUMEN

Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1-3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitinación , Ensamble de Virus , Replicación Viral , Humanos , Coriomeningitis Linfocítica/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas
3.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187543

RESUMEN

Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.


Asunto(s)
Fiebre Hemorrágica Americana/virología , Interacciones Huésped-Patógeno , Virus Junin/patogenicidad , Proteoma/metabolismo , Proteómica/métodos , Replicación Viral , Células HEK293 , Fiebre Hemorrágica Americana/metabolismo , Humanos , Virus Junin/aislamiento & purificación , Proteoma/análisis , Proteínas de la Matriz Viral/metabolismo , Liberación del Virus
4.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539447

RESUMEN

Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV.IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend on an increased basic understanding of these viruses and, in particular, their interactions with the host cell machinery. Identifying host proteins critical for the viral life cycle and/or pathogenesis represents a useful strategy to uncover new drug targets. This study reveals, for the first time, the extensive human protein interactome of arenavirus nucleoproteins and uncovers a potent antiviral host protein that is neutralized during Junín virus infection. In so doing, it shows further insight into the interplay between the virus and the host innate immune response and provides an important data set for the field.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Virus Junin/patogenicidad , Virus de la Coriomeningitis Linfocítica/patogenicidad , Proteínas de la Nucleocápside/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , Línea Celular , Humanos , Inmunoprecipitación , Espectrometría de Masas , Mapeo de Interacción de Proteínas
5.
PLoS Pathog ; 12(3): e1005501, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27010636

RESUMEN

Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation.


Asunto(s)
Virus Defectuosos/metabolismo , Virus de la Coriomeningitis Linfocítica/fisiología , Virión/metabolismo , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Humanos , Fosforilación , Estructura Terciaria de Proteína , Liberación del Virus
6.
Biochem J ; 474(23): 3963-3984, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29025973

RESUMEN

Discoidin, CUB, and LCCL domain containing 2 (DCBLD2) is a neuropilin-like transmembrane scaffolding receptor with known and anticipated roles in vascular remodeling and neuronal positioning. DCBLD2 is also up-regulated in several cancers and can drive glioblastomas downstream of activated epidermal growth factor receptor. While a few studies have shown either a positive or negative role for DCBLD2 in regulating growth factor receptor signaling, little is known about the conserved signaling features of DCBLD family members that drive their molecular activities. We previously identified DCBLD2 tyrosine phosphorylation sites in intracellular YxxP motifs that are required for the phosphorylation-dependent binding of the signaling adaptors CRK and CRKL (CT10 regulator of kinase and CRK-like). These intracellular YxxP motifs are highly conserved across vertebrates and between DCBLD family members. Here, we demonstrate that, as for DCBLD2, DCBLD1 YxxP motifs are required for CRKL-SH2 (Src homology 2) binding. We report that Src family kinases (SFKs) and Abl differentially promote the interaction between the CRKL-SH2 domain and DCBLD1 and DCBLD2, and while SFKs and Abl each promote DCBLD1 and DCBLD2 binding to the CRKL-SH2 domain, the effect of Abl is more pronounced for DCBLD1. Using high-performance liquid chromatography coupled with tandem mass spectrometry, we quantified phosphorylation at several YxxP sites in DCBLD1 and DCBLD2, mapping site-specific preferences for SFKs and Abl. Together, these data provide a platform to decipher the signaling mechanisms by which these novel receptors drive their biological activities.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de la Membrana/química , Proteínas Nucleares/química , Proteínas Oncogénicas v-abl/química , Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas v-abl/metabolismo , Fosforilación , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Pez Cebra
7.
J Gen Virol ; 97(9): 2084-2089, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27421645

RESUMEN

We report that the lymphocytic choriomeningitis virus (LCMV) matrix protein, which drives viral budding, is phosphorylated at serine 41 (S41). A recombinant (r)LCMV bearing a phosphomimetic mutation (S41D) was impaired in infectious and defective interfering (DI) particle release, while a non-phosphorylatable mutant (S41A) was not. The S41D mutant was disproportionately impaired in its ability to release DI particles relative to infectious particles. Thus, DI particle production by LCMV may be dynamically regulated via phosphorylation of S41.


Asunto(s)
Secuencias de Aminoácidos , Virus Defectuosos/metabolismo , Virus de la Coriomeningitis Linfocítica/fisiología , Fosfoserina/análisis , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Virión/metabolismo , Sustitución de Aminoácidos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de la Matriz Viral/genética
8.
Pathogens ; 7(4)2018 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-30544850

RESUMEN

Lassa mammarenavirus (LASV) is an enveloped RNA virus that can cause Lassa fever, an acute hemorrhagic fever syndrome associated with significant morbidity and high rates of fatality in endemic regions of western Africa. The arenavirus matrix protein Z has several functions during the virus life cycle, including coordinating viral assembly, driving the release of new virus particles, regulating viral polymerase activity, and antagonizing the host antiviral response. There is limited knowledge regarding how the various functions of Z are regulated. To investigate possible means of regulation, mass spectrometry was used to identify potential sites of phosphorylation in the LASV Z protein. This analysis revealed that two serines (S18, S98) and one tyrosine (Y97) are phosphorylated in the flexible N- and C-terminal regions of the protein. Notably, two of these sites, Y97 and S98, are located in (Y97) or directly adjacent to (S98) the PPXY late domain, an important motif for virus release. Studies with non-phosphorylatable and phosphomimetic Z proteins revealed that these sites are important regulators of the release of LASV particles and that host-driven, reversible phosphorylation may play an important role in the regulation of LASV Z protein function.

9.
Proteomes ; 6(4)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274258

RESUMEN

The cAMP-dependent protein kinase A (PKA) is a serine/threonine kinase involved in many fundamental cellular processes, including migration and proliferation. Recently, we found that the Src family kinase Fyn phosphorylates the catalytic subunit of PKA (PKA-C) at Y69, thereby increasing PKA kinase activity. We also showed that Fyn induced the phosphorylation of cellular proteins within the PKA preferred target motif. This led to the hypothesis that Fyn could affect proteins in complex with PKA. To test this, we employed a quantitative mass spectrometry approach to identify Fyn-dependent binding partners in complex with PKA-C. We found Fyn enhanced the binding of PKA-C to several cytoskeletal regulators that localize to the centrosome and Golgi apparatus. Three of these Fyn-induced PKA interactors, AKAP9, PDE4DIP, and CDK5RAP2, were validated biochemically and were shown to exist in complex with Fyn and PKA in a glioblastoma cell line. Intriguingly, the complexes formed between PKA-C and these known AKAPs were dependent upon Fyn catalytic activity and expression levels. In addition, we identified Fyn-regulated phosphorylation sites on proteins in complex with PKA-C. We also identified and biochemically validated a novel PKA-C interactor, LARP4, which complexed with PKA in the absence of Fyn. These results demonstrate the ability of Fyn to influence the docking of PKA to specific cellular scaffolds and suggest that Fyn may affect the downstream substrates targeted by PKA.

10.
FEBS J ; 285(1): 72-86, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091353

RESUMEN

Plexins (Plxns) are semaphorin (Sema) receptors that play important signaling roles, particularly in the developing nervous system and vasculature. Sema-Plxn signaling regulates cellular processes such as cytoskeletal dynamics, proliferation, and differentiation. However, the receptor-proximal signaling mechanisms driving Sema-Plxn signal transduction are only partially understood. Plxn tyrosine phosphorylation is thought to play an important role in these signaling events as receptor and nonreceptor tyrosine kinases have been shown to interact with Plxn receptors. The Src family kinase Fyn can induce the tyrosine phosphorylation of PlxnA1 and PlxnA2. However, the Fyn-dependent phosphorylation sites on these receptors have not been identified. Here, using mass spectrometry-based approaches, we have identified highly conserved, Fyn-induced PlexinA (PlxnA) tyrosine phosphorylation sites. Mutation of these sites to phenylalanine results in significantly decreased Fyn-dependent PlxnA tyrosine phosphorylation. Furthermore, in contrast to wild-type human PLXNA2 mRNA, mRNA harboring these point mutations cannot rescue eye developmental defects when coinjected with a plxnA2 morpholino in zebrafish embryos. Together these data suggest that Fyn-dependent phosphorylation at two critical tyrosines is a key feature of vertebrate PlxnA1 and PlxnA2 signal transduction.


Asunto(s)
Ojo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de Superficie Celular/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Ojo/embriología , Células HEK293 , Humanos , Mutación Missense , Proteínas del Tejido Nervioso/genética , Fosforilación , Receptores de Superficie Celular/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Tirosina/genética , Pez Cebra
11.
FEBS Lett ; 590(8): 1042-52, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27001024

RESUMEN

Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain.


Asunto(s)
Dominios Homologos src , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Aminoácidos/genética , Secuencia Conservada , Células HEK293 , Humanos , Espectrometría de Masas , Fosforilación , Fosfotirosina , Unión Proteica , Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA