Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Electrophoresis ; 44(1-2): 72-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35968886

RESUMEN

The separation of particles with respect to their intrinsic properties is an ongoing task in various fields such as biotechnology and recycling of electronic waste. Especially for small particles in the lower micrometer or nanometer range, separation techniques are a field of current research since many existing approaches lack either throughput or selectivity. Dielectrophoresis (DEP) is a technique that can address multiple particle properties, making it a potential candidate to solve challenging separation tasks. Currently, DEP is mostly used in microfluidic separators and thus limited in throughput. Additionally, DEP setups often require expensive components, such as electrode arrays fabricated in the clean room. Here, we present and characterize a separator based on two inexpensive custom-designed printed circuit boards (80 × 120 mm board size). The boards consist of interdigitated electrode arrays with 250 µ $250\ \umu$ m electrode width and spacing. We demonstrate the separation capabilities using polystyrene particles ranging from 500 nm to 6 µ $6\ \umu$ m in monodisperse experiments. Further, we demonstrate selective trapping at flow rates up to 240 ml/h in the presented device for a binary mixture. Our experiments demonstrate an affordable way to increase throughput in electrode-based DEP separators.


Asunto(s)
Técnicas Analíticas Microfluídicas , Electroforesis/métodos , Microfluídica , Electrodos , Poliestirenos
2.
Sci Rep ; 14(1): 16491, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020049

RESUMEN

Separation and classification are important operations in particle technology, but they are still limited in terms of suspended particles in the micrometer and nanometer size-range. Electrical fields can be beneficial for sorting such particles according to material properties. A mechanism based on strong and inhomogeneous fields is dielectrophoresis (DEP). It can be used to separate microparticles according to their material properties, such as conductivity and permittivity, by selectively trapping one particle type while the other can pass the separator. Conventional DEP-separators show either a limitation in throughput or frequency bandwidth. A low throughput limits the economical feasibility in many cases. A lower frequency bandwidth limits the variety of materials that can be sorted by DEP. To separate semiconducting particles from a mixture containing particles with higher conductivity according to their material, high frequencies are required. Possible applications are the separation of semiconducting and metallic carbon nanotubes or the separation of carbon-coated lithium iron phosphate particles from graphite in the recycling process of spent lithium-ion batteries. In this publication, we aim to display how to tune the electrical impedance of a high-throughput DEP separator based on custom-designed printed circuit boards to increase its frequency bandwidth. By adding inductors to the electrical circuit, we were able to increase the frequency bandwidth from 500 kHz to over 11 MHz. The experiments in this study act as proof-of-principle. Furthermore, a non-deterministic way to increase the impedance of the setup is shown, yielding a maximum frequency of 39.16 MHz.

3.
Sci Rep ; 13(1): 20696, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001123

RESUMEN

Particle separation is an essential part of many processes. One mechanism to separate particles according to size, shape, or material properties is dielectrophoresis (DEP). DEP arises when a polarizable particle is immersed in an inhomogeneous electric field. DEP can attract microparticles toward the local field maxima or repulse them from these locations. In biotechnology and microfluidic devices, this is a well-described and established method to separate (bio-)particles. Increasing the throughput of DEP separators while maintaining their selectivity is a field of current research. In this study, we investigate two approaches to increase the overall throughput of an electrode-based DEP separator that uses selective trapping of particles. We studied how particle concentration affects the separation process by using two differently-sized graphite particles. We showed that concentrations up to 800 mg/L can be processed without decreasing the collection rate depending on the particle size. As a second approach to increase the throughput, parallelization in combination with two four-way valves, relays, and stepper motors was presented and successfully tested to continuously separate conducting from non-conducting particles. By demonstrating possible concentrations and enabling a semi-continuous process, this study brings the low-cost DEP setup based on printed circuit boards one step closer to real-world applications. The principle for semi-continuous processing is also applicable for other DEP devices that use trapping DEP.

4.
ACS Omega ; 8(29): 26635-26643, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521612

RESUMEN

Lithium-ion batteries (LIBs) are common in everyday life and the demand for their raw materials is increasing. Additionally, spent LIBs should be recycled to achieve a circular economy and supply resources for new LIBs or other products. Especially the recycling of the active material of the electrodes is the focus of current research. Existing approaches for recycling (e.g., pyro-, hydrometallurgy, or flotation) still have their drawbacks, such as the loss of materials, generation of waste, or lack of selectivity. In this study, we test the behavior of commercially available LiFePO4 and two types of graphite microparticles in a dielectrophoretic high-throughput filter. Dielectrophoresis is a volume-dependent electrokinetic force that is commonly used in microfluidics but recently also for applications that focus on enhanced throughput. In our study, graphite particles show significantly higher trapping than LiFePO4 particles. The results indicate that nearly pure fractions of LiFePO4 can be obtained with this technique from a mixture with graphite.

5.
Sci Rep ; 11(1): 16861, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413323

RESUMEN

Separation of (biological) particles ([Formula: see text]) according to size or other properties is an ongoing challenge in a variety of technical relevant fields. Dielectrophoresis is one method to separate particles according to a diversity of properties, and within the last decades a pool of dielectrophoretic separation techniques has been developed. However, many of them either suffer selectivity or throughput. We use simulation and experiments to investigate retention mechanisms in a novel DEP scheme, namely, frequency-modulated DEP. Results from experiments and simulation show a good agreement for the separation of binary PS particles mixtures with respect to size and more importantly, for the challenging task of separating equally sized microparticles according to surface functionalization alone. The separation with respect to size was performed using 2 [Formula: see text]m and 3 [Formula: see text]m sized particles, whereas separation with respect to surface functionalization was performed with 2 [Formula: see text]m particles. The results from this study can be used to solve challenging separation tasks, for example to separate particles with distributed properties.

6.
Micromachines (Basel) ; 11(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905625

RESUMEN

The separation of microparticles with respect to different properties such as size and material is a research field of great interest. Dielectrophoresis, a phenomenon that is capable of addressing multiple particle properties at once, can be used to perform a chromatographic separation. However, the selectivity of current dielectrophoretic particle chromatography (DPC) techniques is limited. Here, we show a new approach for DPC based on differences in the dielectrophoretic mobilities and the crossover frequencies of polystyrene particles. Both differences are addressed by modulating the frequency of the electric field to generate positive and negative dielectrophoretic movement to achieve multiple trap-and-release cycles of the particles. A chromatographic separation of different particle sizes revealed the voltage dependency of this method. Additionally, we showed the frequency bandwidth influence on separation using one example. The DPC method developed was tested with model particles, but offers possibilities to separate a broad range of plastic and metal microparticles or cells and to overcome currently existing limitations in selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA