Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(5): e21371, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811694

RESUMEN

Studies demonstrate a role for neurotensin (NT) in obesity and related comorbidities. Bile acid (BA) homeostasis alterations are associated with obesity. We determined the effect of NT on BA metabolism in obese and non-obese conditions. Plasma and fecal BA profiles were analyzed by LC-MS/MS in male and female NT+/+ and NT-/- mice fed low-fat (LFD) or high-fat diet (HFD) for 6 weeks (early stage of obesity) or greater than 20 weeks (late stage of obesity). The nuclear farnesoid X receptor (FXR) and BA transporter mRNA expression were assessed in ileum, mouse enteroids, and human cell lines. HFD decreased plasma primary and secondary BAs in NT+/+ mice; HFD-induced decrease of plasma BAs was improved in NT-deficient mice. In NT+/+ mice, HFD inhibited ileal FXR and BA transporter expression; HFD-decreased expression of FXR and BA transporters was prevented in NT-/- mice. Compared with LFD-fed NT+/+ mice, LFD-fed NT-/- mice had relatively lower levels of ileal FXR and BA transporter expression. Moreover, NT stimulates the expression of FXR and BA transporters in Caco-2 cells; however, stimulated expression of BA transporters was attenuated in NT-/- enteroids. Therefore, we demonstrate that HFD disrupts the BA metabolism and ileal FXR and BA transporter axis which are improved in the absence of NT, suggesting that NT contributes to HFD-induced disruption of BA metabolism and plays an inhibitory role in the regulation of ileal FXR and BA transporter signaling under obese conditions. Conversely, NT positively regulates the expression of ileal FXR and BA transporters under non-obese conditions. Therefore, NT plays a dual role in obese and non-obese conditions, suggesting possible therapeutic strategies for obesity control.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Intestinos/fisiología , Neurotensina/fisiología , Nutrientes/metabolismo , Obesidad/fisiopatología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Células CACO-2 , Dieta Alta en Grasa , Femenino , Humanos , Masculino , Ratones
2.
J Neurooncol ; 156(1): 153-161, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820776

RESUMEN

BACKGROUND: Hematological adverse events (HAEs) are common during treatment for glioblastoma (GBM), usually associated with temozolomide (TMZ). Their clinical value is uncertain, as few investigations have focused on outcomes for HAEs during GBM treatment. METHODS: We combined data from two randomized clinical trials, RTOG 0525 and RTOG 0825, to analyze HAEs during treatment for GBM. We investigated differences between chemoradiation and adjuvant therapy, and by regimen received during adjuvant treatment. RESULTS: 1454 patients participated in these trials, of which 1154 (79.4%) developed HAEs. During chemoradiation, 44.4% of patients developed HAEs (54% involving more than one cell line), and were most commonly lymphopenia (50.6%), and thrombocytopenia (47.5%). During adjuvant treatment, 45% of patients presented HAEs (78.6% involving more than one cell line), and were more commonly leukopenia (62.7%), and thrombocytopenia (62.3%). Median overall survival (OS) and progression free survival (PFS) were longer in patients with HAEs (OS 19.4 months and PFS 9.9 months) compared to those with other or no adverse events (OS 14.1 months and PFS 5.9 months). There was no significant difference in survival between grade 1 and/or 2 versus grade 3 and/or 4 HAEs. History of HAEs during chemoradiation was a protective factor for presentation of HAEs during adjuvant therapy. CONCLUSION: HAEs are common during GBM treatment, and often involve more than one cell line (more likely during adjuvant therapy). HAEs may be associated with prolonged OS and PFS, particularly during adjuvant therapy. HAEs during chemoradiation was a protective factor for HAEs during adjuvant therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/efectos adversos , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Temozolomida/efectos adversos , Trombocitopenia/inducido químicamente
3.
Nature ; 533(7603): 411-5, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193687

RESUMEN

Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Neurotensina/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Células Enteroendocrinas/metabolismo , Activación Enzimática , Cuerpo Adiposo/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Femenino , Humanos , Resistencia a la Insulina/fisiología , Mucosa Intestinal/metabolismo , Intestinos/citología , Metabolismo de los Lípidos , Masculino , Ratones , Persona de Mediana Edad , Neurotensina/sangre , Neurotensina/deficiencia , Neurotensina/genética , Obesidad/sangre , Obesidad/prevención & control , Precursores de Proteínas/sangre , Precursores de Proteínas/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742953

RESUMEN

Altered lipid metabolism is a potential target for therapeutic intervention in cancer. Overexpression of Fatty Acid Synthase (FASN) correlates with poor prognosis in colorectal cancer (CRC). While multiple studies show that upregulation of lipogenesis is critically important for CRC progression, the contribution of FASN to CRC initiation is poorly understood. We utilize a C57BL/6-Apc/Villin-Cre mouse model with knockout of FASN in intestinal epithelial cells to show that the heterozygous deletion of FASN increases mouse survival and decreases the number of intestinal adenomas. Using RNA-Seq and gene set enrichment analysis, we demonstrate that a decrease in FASN expression is associated with inhibition of pathways involved in cellular proliferation, energy production, and CRC progression. Metabolic and reverse phase protein array analyses demonstrate consistent changes in alteration of metabolic pathways involved in both anabolism and energy production. Downregulation of FASN expression reduces the levels of metabolites within glycolysis and tricarboxylic acid cycle with the most significant reduction in the level of citrate, a master metabolite, which enhances ATP production and fuels anabolic pathways. In summary, we demonstrate the critical importance of FASN during CRC initiation. These findings suggest that targeting FASN is a potential therapeutic approach for early stages of CRC or as a preventive strategy for this disease.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/genética , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Transcriptoma
5.
FASEB J ; 34(6): 8596-8610, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32359121

RESUMEN

We previously reported that high levels of plasma neurotensin (NT), a gut hormone released from enteroendocrine cells of the small bowel, contribute to obesity and comorbid conditions. Gut microbiota has been implicated in the obesity development. Paneth cells are critical in maintaining gut microbiota composition and homeostasis by releasing antimicrobial proteins including α-defensins. The purpose of our current study was to determine the possible role of NT in gut microbiota composition and α-defensin gene expression associated with obesity. Here we show that the ratio of Firmicutes/Bacteroidetes (F/B ratio) and intestinal proinflammatory cytokines is significantly increased in NT+/+ mice fed with a high-fat diet (HFD) which were improved in NT-deficient mice. HFD disrupted the intestinal Mmp7/α-defensin axis, which was completely prevented in NT-/- mice. In addition, NT treatment inhibited DEFA5 expression and concurrent NF-κB activity, which was blocked by a pan PKC inhibitor (Gö6983) or an inhibitor for atypical PKCs (CRT0066854). More importantly, the shRNA-mediated knockdown of atypical PKCτ reversed NT-attenuated DEFA5 expression and increased NF-κB activity. NT contributes to the HFD-induced disruption of gut microbiota composition and α-defensin expression. PKCτ/λ plays a central role in NT-mediated α-defensin gene expression which might be mediated through the inhibition of NF-κB signaling pathways in Paneth cells.


Asunto(s)
Disbiosis/metabolismo , Inflamación/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Neurotensina/metabolismo , alfa-Defensinas/metabolismo , Tejido Adiposo/metabolismo , Animales , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Disbiosis/patología , Microbioma Gastrointestinal/fisiología , Inflamación/patología , Resistencia a la Insulina/fisiología , Intestinos/patología , Masculino , Ratones , Ratones Obesos , FN-kappa B/metabolismo , Obesidad/metabolismo , Células de Paneth/metabolismo , Transducción de Señal/fisiología
6.
J Biol Chem ; 294(18): 7516-7527, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30885944

RESUMEN

It is generally accepted that alterations in metabolism are critical for the metastatic process; however, the mechanisms by which these metabolic changes are controlled by the major drivers of the metastatic process remain elusive. Here, we found that S100 calcium-binding protein A4 (S100A4), a major metastasis-promoting protein, confers metabolic plasticity to drive tumor invasion and metastasis of non-small cell lung cancer cells. Investigating how S100A4 regulates metabolism, we found that S100A4 depletion decreases oxygen consumption rates, mitochondrial activity, and ATP production and also shifts cell metabolism to higher glycolytic activity. We further identified that the 49-kDa mitochondrial complex I subunit NADH dehydrogenase (ubiquinone) Fe-S protein 2 (NDUFS2) is regulated in an S100A4-dependent manner and that S100A4 and NDUFS2 exhibit co-occurrence at significant levels in various cancer types as determined by database-driven analysis of genomes in clinical samples using cBioPortal for Cancer Genomics. Importantly, we noted that S100A4 or NDUFS2 silencing inhibits mitochondrial complex I activity, reduces cellular ATP level, decreases invasive capacity in three-dimensional growth, and dramatically decreases metastasis rates as well as tumor growth in vivo Finally, we provide evidence that cells depleted in S100A4 or NDUFS2 shift their metabolism toward glycolysis by up-regulating hexokinase expression and that suppressing S100A4 signaling sensitizes lung cancer cells to glycolysis inhibition. Our findings uncover a novel S100A4 function and highlight its importance in controlling NDUFS2 expression to regulate the plasticity of mitochondrial metabolism and thereby promote the invasive and metastatic capacity in lung cancer.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , NADH Deshidrogenasa/metabolismo , Invasividad Neoplásica , Proteína de Unión al Calcio S100A4/metabolismo , Regulación hacia Arriba , Adenosina Trifosfato/biosíntesis , Línea Celular Tumoral , Silenciador del Gen , Glucólisis , Humanos , NADH Deshidrogenasa/genética , Metástasis de la Neoplasia , Transducción de Señal
7.
Biochim Biophys Acta ; 1852(10 Pt A): 2013-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26187040

RESUMEN

A common feature of inflammatory bowel disease (IBD) is the loss of intestinal epithelial barrier function due to excessive apoptosis of intestinal epithelial cells (IECs). However, the molecular mechanism underlying increased IEC apoptosis remains unclear. Here, we investigated the role of PHLPP, a novel family of protein phosphatases, in regulating inflammation-induced IEC apoptosis in mouse models of colitis. Both Phlpp1 and Phlpp2 genes were deleted in mice. Compared with wild-type mice, PHLPP double knockout (DKO) mice were protected from colitis induced by DSS as demonstrated by lower histopathological scores, and this reduced susceptibility to colitis was associated with decreased apoptosis and increased Akt activity in IECs in vivo. In addition, epithelial organoids derived from PHLPP DKO mice were more resistant to inflammation-induced apoptosis while inhibition of Akt activity abolished the protective effect of PHLPP-loss. Furthermore, we found that PHLPP expression was significantly reduced in IECs following the induction of colitis by DSS and in human IBD patient samples. This inflammation-induced downregulation of PHLPP was partially blocked by treating cells with a proteasome inhibitor. Taken together, our results indicated that proteasome-mediated degradation of PHLPP at the onset of inflammation plays an important role in protecting IEC injury by inhibiting apoptosis.

8.
J Biol Chem ; 289(38): 26021-26037, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25086043

RESUMEN

Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1(-/-);Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transactivadores/fisiología , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Beclina-1 , Proteínas Fluorescentes Verdes/biosíntesis , Células Hep G2 , Humanos , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Fagosomas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Transactivadores/química
9.
Breast Cancer Res ; 17: 25, 2015 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-25849745

RESUMEN

INTRODUCTION: Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with no effective targeted therapy. Inducible nitric oxide synthase (iNOS) is associated with poor survival in patients with breast cancer by increasing tumor aggressiveness. This work aimed to investigate the potential of iNOS inhibitors as a targeted therapy for TNBC. We hypothesized that inhibition of endogenous iNOS would decrease TNBC aggressiveness by reducing tumor initiation and metastasis through modulation of epithelial-mesenchymal transition (EMT)-inducing factors. METHODS: iNOS protein levels were determined in 83 human TNBC tissues and correlated with clinical outcome. Proliferation, mammosphere-forming efficiency, migration, and EMT transcription factors were assessed in vitro after iNOS inhibition. Endogenous iNOS targeting was evaluated as a potential therapy in TNBC mouse models. RESULTS: High endogenous iNOS expression was associated with worse prognosis in patients with TNBC by gene expression as well as immunohistochemical analysis. Selective iNOS (1400 W) and pan-NOS (L-NMMA and L-NAME) inhibitors diminished cell proliferation, cancer stem cell self-renewal, and cell migration in vitro, together with inhibition of EMT transcription factors (Snail, Slug, Twist1, and Zeb1). Impairment of hypoxia-inducible factor 1α, endoplasmic reticulum stress (IRE1α/XBP1), and the crosstalk between activating transcription factor 3/activating transcription factor 4 and transforming growth factor ß was observed. iNOS inhibition significantly reduced tumor growth, the number of lung metastases, tumor initiation, and self-renewal. CONCLUSIONS: Considering the effectiveness of L-NMMA in decreasing tumor growth and enhancing survival rate in TNBC, we propose a targeted therapeutic clinical trial by re-purposing the pan-NOS inhibitor L-NMMA, which has been extensively investigated for cardiogenic shock as an anti-cancer therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Transcripción Activador 3/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Transición Epitelial-Mesenquimal/genética , Femenino , Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Terapia Molecular Dirigida , Invasividad Neoplásica , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Pronóstico , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Int J Cancer ; 136(6): 1475-81, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25098665

RESUMEN

Wnt/ß-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the ß-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located ∼900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to ß-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/ß-catenin pathway and may be a mediator for NET cell growth.


Asunto(s)
Tumores Neuroendocrinos/patología , Neurotensina/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neurotensina/antagonistas & inhibidores , Neurotensina/genética , Regiones Promotoras Genéticas , Receptores de Neurotensina/fisiología
11.
Carcinogenesis ; 35(6): 1341-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24510238

RESUMEN

Upregulation of fatty acid synthase (FASN), a key enzyme of de novo lipogenesis, is associated with metastasis in colorectal cancer (CRC). However, the mechanisms of regulation are unknown. Since angiogenesis is crucial for metastasis, we investigated the role of FASN in the neovascularization of CRC. The effect of FASN on tumor vasculature was studied in orthotopic CRCs, the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models using immunohistochemistry, immunofluorescent staining and confocal microscopy. Cell secretion was evaluated by ELISA and antibody arrays. Proliferation, migration and tubulogenesis of endothelial cells (ECs) were assessed in CRC-EC coculture models. In this study, we found that stable knockdown of FASN decreased microvessel density in HT29 and HCT116 orthotopic CRCs and resulted in 'normalization' of tumor vasculature in both orthotopic and CAM models. Furthermore, FASN regulated secretion of pro- and antiangiogenic factors, including vascular endothelial growth factor-A (VEGF-A). Mechanisms associated with the antiangiogenic activity noted with knockdown of FASN included: downregulation of VEGF(189), upregulation of antiangiogenic isoform VEGF(165b) and a decrease in expression and activity of matrix metalloproteinase-9. Furthermore, conditioned medium from FASN knockdown CRC cells inhibited activation of vascular endothelial growth factor receptor-2 and its downstream signaling and decreased proliferation, migration and tubulogenesis of ECs as compared with control medium. Together, these results suggest that cancer cell-associated FASN regulates tumor vasculature through alteration of the profile of secreted angiogenic factors and regulation of their bioavailability. Inhibition of FASN upstream of VEGF-A and other angiogenic pathways can be a novel therapeutic strategy to prevent or inhibit metastasis in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células Endoteliales/metabolismo , Ácido Graso Sintasas/genética , Neovascularización Patológica/genética , Animales , Línea Celular Tumoral , Embrión de Pollo , Modelos Animales de Enfermedad , Ácido Graso Sintasas/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Neovascularización Patológica/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
Pharm Res ; 31(6): 1450-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23619595

RESUMEN

PURPOSE: To develop novel hybrid paclitaxel (PTX) nanocrystals, in which bioactivatable (MMPSense® 750 FAST) and near infrared (Flamma Fluor® FPR-648) fluorophores are physically incorporated, and to evaluate their anticancer efficacy and diagnostic properties in breast cancer xenograft murine model. METHODS: The pure and hybrid paclitaxel nanocrystals were prepared by an anti-solvent method, and their physical properties were characterized. The tumor volume change and body weight change were evaluated to assess the treatment efficacy and toxicity. Bioimaging of treated mice was obtained non-invasively in vivo. RESULTS: The released MMPSense molecules from the hybrid nanocrystals were activated by matrix metalloproteinases (MMPs) in vivo, similarly to the free MMPSense, demonstrating its ability to monitor cancer progression. Concurrently, the entrapped FPR-648 was imaged at a different wavelength. Furthermore, when administered at 20 mg/kg, the nanocrystal formulations exerted comparable efficacy as Taxol®, but with decreased toxicity. CONCLUSIONS: Hybrid nanocrystals that physically integrated two fluorophores were successfully prepared from solution. Hybrid nanocrystals were shown not only exerting antitumor activity, but also demonstrating the potential of multi-modular bioimaging for diagnostics.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Química Farmacéutica , Femenino , Colorantes Fluorescentes , Humanos , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Desnudos , Nanopartículas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Atherosclerosis ; 392: 117479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423808

RESUMEN

BACKGROUND AND AIMS: Obesity and type 2 diabetes are significant risk factors for atherosclerotic cardiovascular disease (CVD) worldwide, but the underlying pathophysiological links are poorly understood. Neurotensin (NT), a 13-amino-acid hormone peptide, facilitates intestinal fat absorption and contributes to obesity in mice fed a high-fat diet. Elevated levels of pro-NT (a stable NT precursor produced in equimolar amounts relative to NT) are associated with obesity, type 2 diabetes, and CVD in humans. Whether NT is a causative factor in CVD is unknown. METHODS: Nt+/+ and Nt-/- mice were either injected with adeno-associated virus encoding PCSK9 mutants or crossed with Ldlr-/- mice and fed a Western diet. Atherosclerotic plaques were analyzed by en face analysis, Oil Red O and CD68 staining. In humans, we evaluated the association between baseline pro-NT and growth of carotid bulb thickness after 16.4 years. Lipidomic profiles were analyzed. RESULTS: Atherosclerotic plaque formation is attenuated in Nt-deficient mice through mechanisms that are independent of reductions in circulating cholesterol and triglycerides but associated with remodeling of the plasma triglyceride pool. An increasing plasma concentration of pro-NT predicts atherosclerotic events in coronary and cerebral arteries independent of all major traditional risk factors, indicating a strong link between NT and atherosclerosis. This plasma lipid profile analysis confirms the association of pro-NT with remodeling of the plasma triglyceride pool in atherosclerotic events. CONCLUSIONS: Our findings are the first to directly link NT to increased atherosclerosis and indicate the potential role for NT in preventive and therapeutic strategies for CVD.


Asunto(s)
Aterosclerosis , Ratones Noqueados , Neurotensina , Placa Aterosclerótica , Triglicéridos , Animales , Neurotensina/sangre , Triglicéridos/sangre , Aterosclerosis/sangre , Humanos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Femenino , Ratones , Receptores de LDL/genética , Receptores de LDL/deficiencia , Factores de Riesgo , Ácidos Grasos/metabolismo , Ácidos Grasos/sangre , Persona de Mediana Edad , Precursores de Proteínas
14.
Carcinogenesis ; 34(5): 953-61, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23354304

RESUMEN

Carcinoid tumors are rare neuroendocrine tumors (NETs) that are increasing in incidence. Mutation and altered expression of Wnt/ß-catenin signaling components have been described in many tumors but have not been well-studied in NETs. Here, we observed accumulation of ß-catenin in the cytoplasm and/or nucleus in 25% of clinical NET tissues. By mutational analysis, the mutations of ß-catenin (I35S) and APC (E1317Q, T1493T) were identified in NET cells and the tissues. Expression of representative Wnt inhibitors was absent or markedly decreased in BON, a human pancreatic carcinoid cell line; treatment with 5-aza-2'-deoxycytidine (5-aza-CdR) increased expression levels of the Wnt inhibitors. Methylation analyses demonstrated that CpG islands of SFRP-1 and Axin-2 were methylated, whereas the promoters of DKK-1, DKK-3 and WIF-1 were unmethylated in four NET cells. Aberrant methylation of SFRP-1 was particularly observed in most of clinical NET tissues. In addition, the repression of these unmethylated genes was associated with histone H3 lysine 9 dimethylation (H3K9me2) in BON cells. Together, 5-aza-CdR treatment inhibited cell proliferation and decreased the protein levels of H3K9me2 and G9a. Moreover, a novel G9a inhibitor, UNC0638, suppressed BON cell proliferation through inhibition of Wnt/ß-catenin pathway. Overexpression of the inhibitory genes, particularly SFRP-1 and WIF-1 in BON cells, resulted in suppression of anchorage-independent growth and inhibition of tumor growth in mice. Our findings suggest that aberrant Wnt/ß-catenin signaling, through either mutations or epigenetic silencing of Wnt antagonists, contributes to the pathogenesis and growth of NETs and have important clinical implications for the prognosis and treatment of NETs.


Asunto(s)
Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Islas de CpG , Citoplasma/genética , Citoplasma/metabolismo , Metilación de ADN , Análisis Mutacional de ADN/métodos , Epigénesis Genética , Epigenómica/métodos , Expresión Génica/genética , Genes APC , Genes Supresores de Tumor , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Transcripción Genética/genética
15.
J Biol Chem ; 287(6): 3760-8, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22170051

RESUMEN

B lymphoma Mo-MLV insertion region 1 (Bmi1) is a Polycomb Group (PcG) protein important in gene silencing. It is a component of Polycomb Repressive Complex 1 (PRC1), which is required to maintain the transcriptionally repressive state of many genes. Bmi1 was initially identified as an oncogene that regulates cell proliferation and transformation, and is important in hematopoiesis and the development of nervous systems. Recently, it was reported that Bmi1 is a potential marker for intestinal stem cells. Because Wnt signaling plays a key role in intestinal stem cells, we analyzed the effects of Wnt signaling on Bmi1 expression. We found that Wnt signaling indeed regulates the expression of Bmi1 in colon cancer cells. In addition, the expression of Bmi1 in human colon cancers is significantly associated with nuclear ß-catenin, a hallmark for the activated Wnt signaling. Krüppel-like factor 4 (KLF4) is a zinc finger protein highly expressed in the gut and skin. We recently found that KLF4 cross-talks with Wnt/ß-catenin in regulating intestinal homeostasis. We demonstrated that KLF4 directly inhibits the expression of Bmi1 in colon cancer cells. We also found that Bmi1 regulates histone ubiquitination and is required for colon cancer proliferation in vitro and in vivo. Our findings further suggest that Bmi1 is an attractive target for cancer therapeutics.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Mucosa Intestinal/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Represoras/biosíntesis , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Histonas , Humanos , Intestinos/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Células Madre/metabolismo , Células Madre/patología , Trasplante Heterólogo , Ubiquitinación/genética , beta Catenina/genética
16.
Stat Methods Med Res ; 32(10): 2033-2048, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647221

RESUMEN

Missing data is a common issue in many biomedical studies. Under a paired design, some subjects may have missing values in either one or both of the conditions due to loss of follow-up, insufficient biological samples, etc. Such partially paired data complicate statistical comparison of the distribution of the variable of interest between the two conditions. In this article, we propose a general class of test statistics based on the difference in weighted sample means without imposing any distributional or model assumption. An optimal weight is derived from this class of tests. Simulation studies show that our proposed test with the optimal weight performs well and outperforms existing methods in practical situations. Two cancer biomarker studies are provided for illustration.

17.
Cell Mol Gastroenterol Hepatol ; 15(4): 931-947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36584817

RESUMEN

BACKGROUND AND AIMS: The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. An imbalance in this highly regimented process within the intestinal crypts is associated with several intestinal pathologies. Although metabolic changes are known to play a pivotal role in cell proliferation and differentiation, how glycolysis contributes to intestinal epithelial homeostasis remains to be defined. METHODS: Small intestines were harvested from mice with specific hexokinase 2 (HK2) deletion in the intestinal epithelium or LGR5+ stem cells. Glycolysis was measured using the Seahorse XFe96 analyzer. Expression of phospho-p38 mitogen-activated protein kinase, the transcription factor atonal homolog 1, and intestinal cell differentiation markers lysozyme, mucin 2, and chromogranin A were determined by Western blot, quantitative real-time reverse transcription polymerase chain reaction, or immunofluorescence, and immunohistochemistry staining. RESULTS: HK2 is a target gene of Wnt signaling in intestinal epithelium. HK2 knockout or inhibition of glycolysis resulted in increased numbers of Paneth, goblet, and enteroendocrine cells and decreased intestinal stem cell self-renewal. Mechanistically, HK2 knockout resulted in activation of p38 mitogen-activated protein kinase and increased expression of ATOH1; inhibition of p38 mitogen-activated protein kinase signaling attenuated the phenotypes induced by HK2 knockout in intestinal organoids. HK2 knockout significantly decreased glycolysis and lactate production in intestinal organoids; supplementation of lactate or pyruvate reversed the phenotypes induced by HK2 knockout. CONCLUSIONS: Our results show that HK2 regulates intestinal stem cell self-renewal and differentiation through p38 mitogen-activated protein kinase/atonal homolog 1 signaling pathway. Our findings demonstrate an essential role for glycolysis in maintenance of intestinal stem cell function.


Asunto(s)
Autorrenovación de las Células , Glucólisis , Ratones , Animales , Diferenciación Celular , Vía de Señalización Wnt , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Lactatos
18.
Carcinogenesis ; 33(9): 1782-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22696593

RESUMEN

Activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling is associated with tumorigenesis and metastasis of colorectal cancer (CRC). The mammalian target of rapamycin (mTOR) kinase, a downstream effector of PI3K/Akt signaling, regulates tumorigenesis and metastasis of CRCs, indicating that mTOR inhibition may have therapeutic potential. Notwithstanding, many cancers, including CRC, demonstrate resistance to the antitumorigenic effects of rapamycin. In this study, we show that inhibition of mTORC1 with rapamycin leads to feedback activation of PI3K/Akt and Ras-MAPK signaling, resulting in cell survival and possible contribution to rapamycin resistance. Combination with the multikinase inhibitor, sorafenib, abrogates rapamycin-induced activation of PI3K/Akt and Ras-MAPK signaling pathways. Combination of rapamycin with sorafenib synergistically inhibits proliferation of CRC cells. CRCs harboring coexistent KRAS and PIK3CA mutations are partially sensitive to either rapamycin or sorafenib monotherapy, but highly sensitive to combination treatment with rapamycin and sorafenib. Combination with sorafenib enhances therapeutic efficacy of rapamycin on induction of apoptosis and inhibition of cell-cycle progression, migration and invasion of CRCs. We demonstrate efficacy and safety of concomitant treatment with rapamycin and sorafenib at inhibiting growth of xenografts from CRC cells with coexistent mutations in KRAS and PIK3CA. The efficacy and tolerability of combined treatment with rapamycin and sorafenib provides rationale for use in treating CRC patients, particularly those with tumors harboring coexistent KRAS and PIK3CA mutations.


Asunto(s)
Antineoplásicos/administración & dosificación , Bencenosulfonatos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Mutación , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Piridinas/administración & dosificación , Sirolimus/administración & dosificación , Proteínas ras/genética , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras) , Sorafenib , Serina-Treonina Quinasas TOR
19.
Cell Mol Gastroenterol Hepatol ; 13(2): 501-516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34560309

RESUMEN

BACKGROUND & AIMS: Intestinal stem cells (ISCs) are sensitive to dietary alterations and nutrient availability. Neurotensin (NT), a gut peptide localized predominantly to the small bowel and released by fat ingestion, stimulates the growth of intestinal mucosa under basal conditions and during periods of nutrient deprivation, suggesting a possible role for NT on ISC function. METHODS: Leucine-rich repeat-containing G-protein coupled receptor 5-Enhanced Green Fluorescent Protein (Lgr5-EGFP) NT wild type (Nt+/+) and Lgr5-EGFP NT knockout (Nt-/-) mice were fed ad libitum or fasted for 48 hours. Small intestine tissue and crypts were examined by gene expression analyses, fluorescence-activated cell sorting, Western blot, immunohistochemistry, and crypt-derived organoid culture. Drosophila expressing NT in midgut enteroendocrine cells were fed a standard diet or low-energy diet and esg-green fluorescent protein+ ISCs were quantified via immunofluorescence. RESULTS: Loss of NT impaired crypt cell proliferation and ISC function in a manner dependent on nutrient status. Under nutrient-rich conditions, NT stimulated extracellular signal-regulated kinases 1 and 2 signaling and the expression of genes that promote cell-cycle progression, leading to crypt cell proliferation. Under conditions of nutrient depletion, NT stimulated WNT/ß-catenin signaling and promoted an ISC gene signature, leading to enhanced ISC function. NT was required for the induction of WNT/ß-catenin signaling and ISC-specific gene expression during nutrient depletion, and loss of NT reduced crypt cell proliferation and impaired ISC function and Lgr5 expression in the intestine during fasting. Conversely, the expression of NT in midgut enteroendocrine cells of Drosophila prevented loss of ISCs during nutrient depletion. CONCLUSIONS: Collectively, our findings establish an evolutionarily conserved role for NT in ISC maintenance during nutritional stress. GSE182828.


Asunto(s)
Neurotensina , Células Madre , Animales , Proliferación Celular , Intestino Delgado , Ratones , Neurotensina/metabolismo , Nutrientes , Células Madre/metabolismo
20.
Front Oncol ; 12: 1043538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439467

RESUMEN

Integrin α6ß4 is highly expressed in triple negative breast cancer (TNBC) and drives its most aggressive traits; however, its impact on chemotherapeutic efficacy remains untested. We found that integrin α6ß4 signaling promoted sensitivity to cisplatin and carboplatin but not to other chemotherapies tested. Mechanistic investigations revealed that integrin α6ß4 stimulated the activation of ATM, p53, and 53BP1, which required the integrin ß4 signaling domain. Genetic manipulation of gene expression demonstrated that mutant p53 cooperated with integrin α6ß4 for cisplatin sensitivity and was necessary for downstream phosphorylation of 53BP1 and enhanced ATM activation. Additionally, we found that in response to cisplatin-induced DNA double strand break (DSB), integrin α6ß4 suppressed the homologous recombination (HR) activity and enhanced non-homologous end joining (NHEJ) repair activity. Finally, we discovered that integrin α6ß4 preferentially activated DNA-PK, facilitated DNA-PK-p53 and p53-53BP1 complex formation in response to cisplatin and required DNA-PK to enhance ATM, 53BP1 and p53 activation as well as cisplatin sensitivity. In summary, we discovered a novel function of integrin α6ß4 in promoting cisplatin sensitivity in TNBC through DNA damage response pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA