RESUMEN
In the adult brain, vascular endothelial growth factor D (VEGFD) is required for structural integrity of dendrites and cognitive abilities. Alterations of dendritic architectures are hallmarks of many neurologic disorders, including stroke-induced damage caused by toxic extrasynaptic NMDA receptor (eNMDAR) signaling. Here we show that stimulation of eNMDARs causes a rapid shutoff of VEGFD expression, leading to a dramatic loss of dendritic structures. Using the mouse middle cerebral artery occlusion (MCAO) stroke model, we have established the therapeutic potential of recombinant mouse VEGFD delivered intraventricularly to preserve dendritic architecture, reduce stroke-induced brain damage, and facilitate functional recovery. An easy-to-use therapeutic intervention for stroke was developed that uses a new class of VEGFD-derived peptide mimetics and postinjury nose-to-brain delivery.
Asunto(s)
Lesiones Encefálicas/prevención & control , Dendritas/fisiología , Modelos Animales de Enfermedad , Mucosa Nasal/metabolismo , Fragmentos de Péptidos/administración & dosificación , Accidente Cerebrovascular/complicaciones , Factor D de Crecimiento Endotelial Vascular/administración & dosificación , Administración Intranasal , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Recuperación de la FunciónRESUMEN
Synaptic NMDA receptors activating nuclear calcium-driven adaptogenomics control a potent body-own neuroprotective mechanism, referred to as acquired neuroprotection. Viral vector-mediated gene transfer in conjunction with stereotactic surgery has previously demonstrated the proficiency of several nuclear calcium-regulated genes to protect in vivo against brain damage caused by toxic extrasynaptic NMDA receptor signaling following seizures or stroke. Here we used noninvasive nose-to-brain administration of Activin A and SerpinB2, two secreted nuclear calcium-regulated neuroprotectants, for post-injury treatment of brain damage following middle cerebral artery occlusion (MCAO) in C57BL/6N mice. The observed reduction of the infarct volume was comparable to the protection obtained by intracerebroventricular injection of recombinant Activin A or SerpinB2 or by stereotactic delivery 3 weeks prior to the injury of a recombinant adeno-associated virus containing an expression cassette for the potent neuroprotective transcription factor Npas4. These results establish post-injury, nose-to-brain delivery of Activin A and SerpinB2 as effective and possibly clinically applicable treatments of acute and chronic neurodegenerative conditions.
Asunto(s)
Activinas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Isquemia Encefálica/terapia , Inhibidor 2 de Activador Plasminogénico/genética , Accidente Cerebrovascular/terapia , Activinas/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/administración & dosificación , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/terapia , Infusiones Intraventriculares , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Neuroprotección/genética , Fármacos Neuroprotectores/administración & dosificación , Inhibidor 2 de Activador Plasminogénico/administración & dosificación , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patologíaAsunto(s)
Biología/tendencias , Animales , Evolución Molecular , Humanos , Morfogénesis , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/terapia , Paleontología/métodos , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , TranscriptomaRESUMEN
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines.
Asunto(s)
Calcio/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Red Nerviosa/metabolismo , Animales , Complemento C1q/biosíntesis , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Ratones , Red Nerviosa/citología , Ratas , Ratas Sprague-Dawley , Factor D de Crecimiento Endotelial Vascular/biosíntesisAsunto(s)
Epigénesis Genética/genética , Epigenómica , Enfermedad de Alzheimer/genética , Animales , Enfermedades Autoinmunes/genética , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Genoma Humano/genética , Haplotipos/genética , Histonas/metabolismo , Humanos , Ratones , Neoplasias/genética , Células Madre/citología , Células Madre/metabolismoAsunto(s)
Biología , Envejecimiento/metabolismo , Animales , Niño , Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/patología , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Ratones , Morfogénesis , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND AND AIM OF THE STUDY: A significant number of patients aged > or =80 years are denied aortic valve surgery due to the assumption of poor outcomes with surgery. The study aim was to evaluate the outcomes of minimally invasive aortic valve replacement (AVR), performed via a right anterior thoracotomy approach, in octogenarians. METHODS: A retrospective review was conducted of all minimally invasive isolated AVRs in patients aged > or =80 years performed at the authors' institution between February 2009 and April 2014. The operative times, postoperative complications, hospital length of stay and mortality were analyzed. RESULTS: A total of 255 consecutive patients (133 males, 122 females; mean age 83.5 +/- 3 years) was identified. The mean left ventricular ejection fraction was 57 +/- 10%, and 31 patients (12.2%) had prior cardiac surgery. The median predicted Society of Thoracic Surgeons mortality score was 3.2% (IQR 2.4-4.4%). Postoperatively, four patients (1.6%) had cerebrovascular accidents, 38 (14.9%) had prolonged ventilation, four (1.6%) required reoperation for bleeding, and eight (3.1%) had acute kidney injury. The median intensive care unit length of stay was 48.5 h (IQR 27-92 h) and the postoperative length of stay was 7 days (IQR 5-9 days). The 30-day mortality was 3.1% (n=8), and the combined end point of morbidity and mortality was 19.2% (n=49). The all-cause mortality at one and three years was 6.7%, and 10.2%, respectively. CONCLUSION: Minimally invasive AVR in octogenarians, performed via a right anterior thoracotomy approach, is associated with a low morbidity and mortality. This applies to both primary or reoperative surgery.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Complicaciones Posoperatorias/epidemiología , Toracotomía/métodos , Anciano de 80 o más Años , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/cirugía , Femenino , Florida/epidemiología , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Implantación de Prótesis de Válvulas Cardíacas/métodos , Implantación de Prótesis de Válvulas Cardíacas/mortalidad , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/mortalidad , Reoperación/estadística & datos numéricos , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Volumen Sistólico , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
The function of MeCP2, a methylated DNA-interacting protein that may act as a global chromatin modifier, is controlled by its phosphorylation on serine 421. Here we show that in hippocampal neurons, nuclear calcium signaling controls synaptic activity-induced phosphorylation of MeCP2 on serine 421. Pharmacological inhibition of calcium/calmodulin-dependent protein (CaM)kinases blocked activity-induced MeCP2 serine 421 phosphorylation. CaM kinase II (CaMKII) but not CaMKIV, the major nuclear CaM kinase in hippocampal neurons, appeared to mediate this phosphorylation event. Biochemical subcellular fractionations and immunolocalization studies revealed that several isoforms of CaMKII (i.e. CaMKIIα, -ß, -γ, and -δ) are expressed in the cytosol but are also detectable in the cell nucleus of hippocampal neurons, suggesting that nuclear CaMKII catalyzes MeCP2 serine 421 phosphorylation. Thus, in addition to the classical nuclear calcium-CaMKIV-CREB/CBP (cAMP-response element-binding protein/CREB-binding protein) pathway that regulates transcription of specific target genes, nuclear calcium may also modulate genome-wide the chromatin state in response to synaptic activity via nuclear CaMKII-MeCP2 signaling.
Asunto(s)
Señalización del Calcio/fisiología , Núcleo Celular/metabolismo , Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/genética , Células Cultivadas , Hipocampo/citología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Fosforilación/fisiología , Serina/genética , Serina/metabolismo , Sinapsis/genética , Transcripción Genética/fisiologíaAsunto(s)
Disciplinas de las Ciencias Biológicas , Animales , Huesos/metabolismo , Evolución Clonal , Daño del ADN , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Inflamasomas/inmunología , Inflamasomas/metabolismo , Metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapiaRESUMEN
Synapse-to-nucleus signaling triggered by synaptic NMDA receptors can lead to the buildup of a neuroprotective shield. Nuclear calcium activating the cAMP response element binding protein (CREB) plays a key role in neuroprotection acquired by synaptic activity. Here we show that in mouse hippocampal neurons, the transcription factor Atf3 (activating transcription factor 3) is a direct target of CREB. Induction of ATF3 expression by CREB in hippocampal neurons was initiated by calcium entry through synaptic NMDA receptors and required nuclear calcium transients and calcium/calmodulin-dependent protein kinase IV activity. Acting as a transcriptional repressor, ATF3 protects cultured hippocampal neurons from apoptosis and extrasynaptic NMDA receptor-induced cell death triggered by bath application of NMDA or oxygen-glucose deprivation. Expression of ATF3 in vivo using stereotaxic delivery of recombinant adeno-associated virus reduces brain damage following a cerebral ischemic insult in mice. Conversion of ATF3 to a transcriptional activator transforms ATF3 into a potent prodeath protein that kills neurons in cell culture and, when expressed in vivo in the hippocampus, ablates the neuronal cell layer. These results link nuclear calcium-CREB signaling to an ATF3-mediated neuroprotective gene repression program, indicating that activity-dependent shutoff of genes is an important process for survival. ATF3 supplementation may counteract age- and disease-related neuronal cell loss caused by a reduction in synaptic activity, malfunctioning of calcium signaling toward and within the nucleus ("nuclear calciopathy"), or increases in death signaling by extrasynaptic NMDA receptors.
Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Isquemia Encefálica/metabolismo , Proteína de Unión a CREB/fisiología , Señalización del Calcio/fisiología , Núcleo Celular/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Factor de Transcripción Activador 3/fisiología , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Proteína de Unión a CREB/metabolismo , Muerte Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Pollos , Silenciador del Gen/fisiología , Masculino , Ratones , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/genéticaRESUMEN
Studies in rodent models of acute and chronic neurodegenerative disorders have uncovered that glutamate-induced excitotoxic cell death is mediated primarily by extrasynaptic N-methyl-d-aspartate receptors (NMDARs). Rodent neurons can also build up in an activity-dependent manner a protective shield against excitotoxicity. This form of acquired neuroprotection is induced by preconditioning with low doses of NMDA or by activation of synaptic NMDARs triggered by bursts of action potentials. Whether NMDARs in human neurons have similar dichotomous actions in cell death and survival is unknown. To investigate this, we established an induced pluripotent stem cell (iPSC)-derived forebrain organoid model for excitotoxic cell death and explored conditions of NMDAR activation that promote neuronal survival when applied prior to a toxic insult. We found that glutamate-induced excitotoxicity in human iPSC-derived neurons is mediated by NMDARs. Treatment of organoids with high concentrations of glutamate or NMDA caused the typical excitotoxicity pathology, comprising structural disintegration, neurite blebbing, shut-off of the transcription factor CRE binding protein (CREB), and cell death. In contrast, bath-applied low doses of NMDA elicited synaptic activity, a robust and sustained increase in CREB phosphorylation as well as function, and upregulation of immediate-early genes, including neuroprotective genes. Moreover, we found that conditions of enhanced synaptic activity increased survival of human iPSC-derived neurons if applied as pre-treatment before toxic NMDA application. These results revealed that both toxic and protective actions of NMDARs are preserved in human neurons. The experimental platform described in this study may prove useful for the validation of neuroprotective gene products and drugs in human neurons.