Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(20): e2203024119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561217

RESUMEN

Remembering life episodes is a complex process that requires interaction among multiple brain areas. It is thought that contextual information provided by the hippocampus (HPC) can trigger the recall of a past event through the activation of medial prefrontal cortex (mPFC) neuronal ensembles, but the underlying mechanisms remain poorly understood. However, little is known about the coordinated activity between these structures during recall. We performed electrophysiological recordings in behaving rats during the retrieval phase of the object-in-context (OIC) memory task. Context-guided recognition of objects in this task requires the activity of both the mPFC and the ventral HPC (vHPC). Coherence, phase locking, and theta amplitude correlation analysis showed an increase in vHPC-mPFC LFP synchronization in the theta range when animals explore contextually mismatched objects. Moreover, we identified ensembles of putative pyramidal cells in the mPFC that encode specific object­context associations. Interestingly, the increase of vHPC-mPFC synchronization during exploration of the contextually mismatched object and the preference of mPFC incongruent object neurons predicts the animals' performance during the resolution of the OIC task. Altogether, these results identify changes in vHPC-mPFC synchronization and mPFC ensembles encoding specific object­context associations likely involved in the recall of past events.


Asunto(s)
Hipocampo , Recuerdo Mental , Corteza Prefrontal , Animales , Hipocampo/fisiología , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Ratas
2.
Neurobiol Learn Mem ; 213: 107960, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004160

RESUMEN

Labilization-reconsolidation, which relies on retrieval, has been considered an opportunity to attenuate the negative aspects of traumatic memories. A therapeutic strategy based on reconsolidation blockade is deemed more effective than current therapies relying on memory extinction. Nevertheless, extremely stressful memories frequently prove resistant to this process. Here, after inducing robust fear memory in mice through strong fear conditioning, we examined the possibility of rendering it susceptible to pharmacological modulation based on the degree of generalized fear (GF). To achieve this, we established an ordered gradient of GF, determined by the perceptual similarity between the associated context (CA) and non-associated contexts (CB, CC, CD, and CE) to the aversive event. We observed that as the exposure context became less similar to CA, the defensive pattern shifted from passive to active behaviors in both male and female mice. Subsequently, in conditioned animals, we administered propranolol after exposure to the different contexts (CA, CB, CC, CD or CE). In males, propranolol treatment resulted in reduced freezing time and enhanced risk assessment behaviors when administered following exposure to CA or CB, but not after CC, CD, or CE, compared to the control group. In females, a similar change in behavioral pattern was observed with propranolol administered after exposure to CC, but not after the other contexts. These results highlight the possibility of indirectly manipulating a robust contextual fear memory by controlling the level of generalization during recall. Additionally, it was demonstrated that the effect of propranolol on reconsolidation would not lead to a reduction in fear memory per se, but rather to its reorganization resulting in greater behavioral flexibility (from passive to active behaviors). Finally, from a clinical viewpoint, this would be of considerable relevance since following this strategy could make the treatment of psychiatric disorders associated with traumatic memory formation more effective and less stressful.

3.
J Neurosci ; 42(34): 6620-6636, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35853718

RESUMEN

Active forgetting occurs in many species, but how behavioral control mechanisms influence which memories are forgotten remains unknown. We previously found that when rats need to retrieve a memory to guide exploration, it reduces later retention of other competing memories encoded in that environment. As with humans, this retrieval-induced forgetting relies on prefrontal control processes. Dopaminergic input to the prefrontal cortex is important for executive functions and cognitive flexibility. We found that, in a similar way, retrieval-induced forgetting of competing memories in male rats requires prefrontal dopamine signaling through D1 receptors. Blockade of medial prefrontal cortex D1 receptors as animals encountered a familiar object impaired active forgetting of competing object memories as measured on a later long-term memory test. Inactivation of the ventral tegmental area produced the same pattern of behavior, a pattern that could be reversed by concomitant activation of prefrontal D1 receptors. We observed a bidirectional modulation of retrieval-induced forgetting by agonists and antagonists of D1 receptors in the medial prefrontal cortex. These findings establish the essential role of prefrontal dopamine in the active forgetting of competing memories, contributing to the shaping of retention in response to the behavioral goals of an organism.SIGNIFICANCE STATEMENT Forgetting is a ubiquitous phenomenon that is actively promoted in many species. The very act of remembering some experiences can cause forgetting of others, in both humans and rats. This retrieval-induced forgetting process is thought to be driven by inhibitory control signals from the prefrontal cortex that target areas where the memories are stored. Here we started disentangling the neurochemical signals in the prefrontal cortex that are essential to retrieval-induced forgetting. We found that, in rats, the release of dopamine in this area, acting through D1 receptors, was essential to causing active forgetting of competing memories. Inhibition of D1 receptors impaired forgetting, while activation increased forgetting. These findings are important, because the mechanisms of active forgetting and their linkage to goal-directed behavior are only beginning to be understood.


Asunto(s)
Dopamina , Recuerdo Mental , Animales , Humanos , Masculino , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Ratas , Receptores de Dopamina D1/metabolismo , Área Tegmental Ventral/fisiología
4.
Cereb Cortex ; 31(2): 1046-1059, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33026440

RESUMEN

Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


Asunto(s)
Giro Dentado/citología , Giro Dentado/metabolismo , Aprendizaje Discriminativo/fisiología , Memoria Episódica , Células Secretoras de Somatostatina/metabolismo , Animales , Giro Dentado/química , Femenino , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Somatostatina/análisis , Somatostatina/metabolismo , Células Secretoras de Somatostatina/química
5.
Proc Natl Acad Sci U S A ; 116(22): 11028-11037, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072928

RESUMEN

Mitochondria in neurons, in addition to their primary role in bioenergetics, also contribute to specialized functions, including regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. However, the factors that influence mitochondrial biogenesis and function in neurons remain poorly elucidated. Here, we identify an important role for serotonin (5-HT) as a regulator of mitochondrial biogenesis and function in rodent cortical neurons, via a 5-HT2A receptor-mediated recruitment of the SIRT1-PGC-1α axis, which is relevant to the neuroprotective action of 5-HT. We found that 5-HT increased mitochondrial biogenesis, reflected through enhanced mtDNA levels, mitotracker staining, and expression of mitochondrial components. This resulted in higher mitochondrial respiratory capacity, oxidative phosphorylation (OXPHOS) efficiency, and a consequential increase in cellular ATP levels. Mechanistically, the effects of 5-HT were mediated via the 5-HT2A receptor and master modulators of mitochondrial biogenesis, SIRT1 and PGC-1α. SIRT1 was required to mediate the effects of 5-HT on mitochondrial biogenesis and function in cortical neurons. In vivo studies revealed that 5-HT2A receptor stimulation increased cortical mtDNA and ATP levels in a SIRT1-dependent manner. Direct infusion of 5-HT into the neocortex and chemogenetic activation of 5-HT neurons also resulted in enhanced mitochondrial biogenesis and function in vivo. In cortical neurons, 5-HT enhanced expression of antioxidant enzymes, decreased cellular reactive oxygen species, and exhibited neuroprotection against excitotoxic and oxidative stress, an effect that required SIRT1. These findings identify 5-HT as an upstream regulator of mitochondrial biogenesis and function in cortical neurons and implicate the mitochondrial effects of 5-HT in its neuroprotective action.


Asunto(s)
Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptor de Serotonina 5-HT2A , Serotonina , Sirtuina 1 , Animales , Corteza Cerebral/citología , Masculino , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/fisiología , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Sirtuina 1/genética , Sirtuina 1/metabolismo
6.
Hippocampus ; 31(2): 140-155, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064924

RESUMEN

Differentiating between similar memories is a crucial cognitive function that enables correct episodic memory formation. The ability to separate the components of memories into distinct representations is thought to rely on a computational process known as pattern separation, by which differences are amplified to disambiguate similar events. Although pattern separation has been localized to the dentate gyrus (DG) of the hippocampus and shown to occur in a spatial domain, this cognitive function takes place also during processing of other types of information. In particular, there is some debate on whether the DG participates in pattern separation of nonspatial representations. Considering the classic role of the Prh in the acquisition and storage of object memories in general and tasks with similar features in particular, this cognitive function could rely more heavily on perirhinal regions when object-related information is processed. Here we show that two plasticity-related proteins, BDNF, and Arc, are required in the DG for nonspatial mnemonic differentiation. Moreover, we found that the crucial role of the DG is transient since activity of AMPAR is only required in the Prh but not the DG during differentiated object memory retrieval. Additionally, this memory is not modifiable by postacquisition rhBDNF infusions in the DG that are known to improve memory when given in the Prh. This highlights a differential role of Prh and DG during differentiated object memory consolidation. Additionally, we found that these molecular mechanisms actively interact in the DG and Prh for the formation of distinguishable memories, with infusions of rhBDNF in the Prh being able to rescue mnemonic deficits caused by reduced Arc expression in the DG. These results reveal a complex interaction between plasticity mechanisms in the Prh and DG for nonspatial pattern separation and posit the Prh as the key structure where unique object representations are stored.


Asunto(s)
Consolidación de la Memoria , Memoria Episódica , Corteza Perirrinal , Giro Dentado , Hipocampo
7.
Neurobiol Learn Mem ; 155: 337-343, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30172952

RESUMEN

Successful memory involves not only remembering information over time but also keeping memories distinct and less confusable. Discrimination of overlapping representations has been investigated in the dentate gyrus (DG) of the hippocampus and largely in the perirhinal cortex (Prh). In particular, the DG was shown to be important for discrimination of overlapping spatial memories and Prh was shown to be important for discrimination of overlapping object memories. In the present study, we used both a DG-dependent and a Prh-dependent task and manipulated the load of similarity between either spatial or object stimuli during information encoding. We showed that N-methyl-D-aspartate-type glutamate receptors (NMDAr) and BDNF participate of the same cellular network during consolidation of both overlapping object and spatial memories in the Prh and DG, respectively. This argues in favor of conserved cellular mechanisms across regions despite anatomical differences.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Hipocampo/fisiología , Corteza Perirrinal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Reconocimiento en Psicología/fisiología , Memoria Espacial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conducta Exploratoria , Consolidación de la Memoria/fisiología , Ratas Long-Evans
8.
J Neurochem ; 136(3): 526-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26484945

RESUMEN

Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 µM) and high (100 µM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 µM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 µM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 µM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and thus facilitating GABA release.


Asunto(s)
Cafeína/farmacología , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Núcleos Talámicos/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Cloruro de Cadmio/farmacología , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Receptor de Serotonina 5-HT2A/genética , Serotonina/farmacología , Serotoninérgicos/farmacología , Núcleos Talámicos/metabolismo , Fosfolipasas de Tipo C/metabolismo
9.
J Neurosci ; 33(40): 15716-25, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24089480

RESUMEN

Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.


Asunto(s)
Recuerdo Mental/fisiología , Corteza Prefrontal/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Reconocimiento en Psicología/fisiología , Animales , Atención/efectos de los fármacos , Atención/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Señales (Psicología) , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Masculino , Recuerdo Mental/efectos de los fármacos , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
10.
Nature ; 452(7183): 93-7, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-18297054

RESUMEN

The psychosis associated with schizophrenia is characterized by alterations in sensory processing and perception. Some antipsychotic drugs were identified by their high affinity for serotonin 5-HT2A receptors (2AR). Drugs that interact with metabotropic glutamate receptors (mGluR) also have potential for the treatment of schizophrenia. The effects of hallucinogenic drugs, such as psilocybin and lysergic acid diethylamide, require the 2AR and resemble some of the core symptoms of schizophrenia. Here we show that the mGluR2 interacts through specific transmembrane helix domains with the 2AR, a member of an unrelated G-protein-coupled receptor family, to form functional complexes in brain cortex. The 2AR-mGluR2 complex triggers unique cellular responses when targeted by hallucinogenic drugs, and activation of mGluR2 abolishes hallucinogen-specific signalling and behavioural responses. In post-mortem human brain from untreated schizophrenic subjects, the 2AR is upregulated and the mGluR2 is downregulated, a pattern that could predispose to psychosis. These regulatory changes indicate that the 2AR-mGluR2 complex may be involved in the altered cortical processes of schizophrenia, and this complex is therefore a promising new target for the treatment of psychosis.


Asunto(s)
Trastornos Psicóticos/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Regulación hacia Abajo , Alucinógenos/metabolismo , Alucinógenos/farmacología , Humanos , Ratones , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Receptor de Serotonina 5-HT2A/análisis , Receptor de Serotonina 5-HT2A/deficiencia , Receptor de Serotonina 5-HT2A/genética , Receptores de Glutamato Metabotrópico/análisis , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/genética , Esquizofrenia/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
11.
Neurobiol Learn Mem ; 103: 19-25, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608181

RESUMEN

The neocortex is thought to be a distributed learning system that gradually integrates semantic information into the initial mnemonic representation rapidly formed by the hippocampus after acquisition. Nevertheless, an emerging view suggests that some cortical regions, in particular the medial prefrontal cortex (mPFC), may also have a role during the initial steps of memory consolidation as well as in the recall of recent memories. Here, we show that mPFC plays a critical role during the first few hours of inhibitory avoidance memory consolidation and is necessary for the normal retrieval of both recent and remote memories, supporting the idea that involvement of neocortical areas in memory processing is not restricted to the late post-training consolidation phase.


Asunto(s)
Reacción de Prevención/fisiología , Memoria/fisiología , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiología , Animales , Anisomicina/farmacología , Reacción de Prevención/efectos de los fármacos , Emetina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Memoria/efectos de los fármacos , Muscimol/farmacología , Red Nerviosa/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar
12.
Front Syst Neurosci ; 17: 1043664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911226

RESUMEN

Introduction: The ability to separate similar experiences into differentiated representations is proposed to be based on a computational process called pattern separation, and it is one of the key characteristics of episodic memory. Although pattern separation has been mainly studied in the dentate gyrus of the hippocampus, this cognitive function if thought to take place also in other regions of the brain. The perirhinal cortex is important for the acquisition and storage of object memories, and in particular for object memory differentiation. The present study was devoted to investigating the importance of the cellular mechanism of endocytosis for object memory differentiation in the perirhinal cortex and its association with brain-derived neurotrophic factor, which was previously shown to be critical for the pattern separation mechanism in this structure. Methods: We used a modified version of the object recognition memory task and intracerebral delivery of a peptide (Tat-P4) into the perirhinal cortex to block endocytosis. Results: We found that endocytosis is necessary for pattern separation in the perirhinal cortex. We also provide evidence from a molecular disconnection experiment that BDNF and endocytosis-related mechanisms interact for memory discrimination in both male and female rats. Discussion: Our experiments suggest that BDNF and endocytosis are essential for consolidation of separate object memories and a part of a time-restricted, protein synthesis-dependent mechanism of memory stabilization in Prh during storage of object representations.

13.
Neuron ; 53(3): 439-52, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17270739

RESUMEN

Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.


Asunto(s)
Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Alucinógenos/farmacología , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Anfetaminas , Animales , Autorradiografía , Unión Competitiva/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Electrofisiología , Hibridación Fluorescente in Situ , Ketanserina/farmacología , Lisurida/farmacología , Masculino , Ratones , Ratones Noqueados , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptor de Serotonina 5-HT2A/genética , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología
14.
Front Neural Circuits ; 14: 26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587504

RESUMEN

Successful memory involves not only remembering over time but also keeping memories distinct. Computational models suggest that pattern separation appears as a highly efficient process to discriminate between overlapping memories. Furthermore, lesion studies have shown that the dentate gyrus (DG) participates in pattern separation. However, these manipulations did not allow identifying the neuronal mechanism underlying pattern separation. The development of different neurophotonics techniques, together with other genetic tools, has been useful for the study of the microcircuit involved in this process. It has been shown that less-overlapped information would generate distinct neuronal representations within the granule cells (GCs). However, because glutamatergic or GABAergic cells in the DG are not functionally or structurally homogeneous, identifying the specific role of the different subpopulations remains elusive. Then, understanding pattern separation requires the ability to manipulate a temporal and spatially specific subset of cells in the DG and ideally to analyze DG cells activity in individuals performing a pattern separation dependent behavioral task. Thus, neurophotonics and calcium imaging techniques in conjunction with activity-dependent promoters and high-resolution microscopy appear as important tools for this endeavor. In this work, we review how different neurophotonics techniques have been implemented in the elucidation of a neuronal network that supports pattern separation alone or in combination with traditional techniques. We discuss the limitation of these techniques and how other neurophotonic techniques could be used to complement the advances presented up to this date.


Asunto(s)
Simulación por Computador , Giro Dentado/fisiología , Memoria/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Fenómenos Ópticos , Animales , Giro Dentado/química , Neuronas GABAérgicas/química , Neuronas GABAérgicas/fisiología , Humanos , Imagen Molecular/métodos , Red Nerviosa/química
15.
Neuronal Signal ; 3(1): NS20180205, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32714597

RESUMEN

Background: Acute treatment with the selective serotonin reuptake inhibitor (SSRI), fluoxetine (Flx), induces anxiety-like behavioral effects. The serotonin2A receptor (5-HT2A) is implicated in the modulation of anxiety-like behavior, however its contribution to the anxiogenic effects of acute Flx remains unclear. Here, we examined the role of the 5-HT2A receptor in the effects of acute Flx on anxiety-like behavior, serum corticosterone levels, neural activation and immediate early gene (IEG) expression in stress-responsive brain regions, using 5-HT2A receptor knockout (5-HT2A -/-) mice of both sexes. Methods: 5-HT2A -/- and wild-type (WT) male and female mice received a single administration of Flx or vehicle, and were examined for anxiety-like behavior, serum corticosterone levels, FBJ murine osteosarcoma viral oncogene homolog peptide (c-Fos) positive cell numbers in stress-responsive brain regions of the hypothalamus and prefrontal cortex (PFC), and PFC IEG expression. Results: The increased anxiety-like behavior and enhanced corticosterone levels evoked by acute Flx were unaltered in 5-HT2A -/- mice of both sexes. 5-HT2A -/- female mice exhibited a diminished neural activation in the hypothalamus in response to acute Flx. Further, 5-HT2A -/- male, but not female, mice displayed altered baseline expression of several IEGs (brain-derived neurotrophic factor (Bdnf), Egr2, Egr4, FBJ osteosarcoma gene (Fos), FBJ murine osteosarcoma viral oncogene homolog B (Fosb), Fos-like antigen 2 (Fosl2), Homer scaffolding protein (Homer) 1-3 (Homer1-3), Jun proto-oncogene (Jun)) in the PFC. Conclusion: Our results indicate that the increased anxiety and serum corticosterone levels evoked by acute Flx are not influenced by 5-HT2A receptor deficiency. However, the loss of function of the 5-HT2A receptor alters the degree of neural activation of the paraventricular nucleus (PVN) of the hypothalamus in response to acute Flx, and baseline expression of several IEGs in the PFC in a sexually dimorphic manner.

16.
J Physiol ; 586(16): 3855-69, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18599541

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) receptors (5-HTRs) play critical roles in brain and cardiovascular functions. In the vasculature, 5-HT induces potent vasoconstrictions, which in aorta are mainly mediated by activation of the 5-HT(2A)R subtype. We previously proposed that one signalling mechanism of 5-HT-induced vasoconstriction could be c-Src, a member of the Src tyrosine kinase family. We now provide evidence for a central role of c-Src in 5-HT(2A)R-mediated contraction. Inhibition of Src kinase activity with 10 mum 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) prior to contraction resulted in approximately 90-99% inhibition of contractions induced by 5-HT or by alpha-methyl-5-HT (5-HT(2)R agonist). In contrast, PP2 pretreatment only partly inhibited contractions induced by angiotensin II and the thromboxane A(2) mimetic, U46619, and had no significant action on phenylephrine-induced contractions. 5-Hydroxytryptamine increased Src kinase activity and PP2-sensitive tyrosine-phosphorylated proteins. As expected for c-Src identity, PP2 pretreatment inhibited 5-HT-induced contraction with an IC(50) of approximately 1 mum. Ketanserin (10 nm), a 5-HT(2A) antagonist, but not antagonists of 5-HT(2B)R (100 nm SB204741) or 5-HT(2C)R (20 nm RS102221), prevented 5-HT-induced contractions, mimicking PP2 and implicating 5-HT(2A)R as the major receptor subtype coupled to c-Src. In HEK 293T cells, c-Src and 5-HT(2A)R were reciprocally co-immunoprecipitated and co-localized at the cell periphery. Finally, 5-HT-induced Src activity was unaffected by inhibition of Rho kinase, supporting a role of c-Src upstream of Rho kinase. Together, the results highlight c-Src activation as one of the early and pivotal mechanisms in 5-HT(2A)R contractile signalling in aorta.


Asunto(s)
Aorta/fisiología , Contracción Miocárdica/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Transducción de Señal/fisiología , Animales , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
17.
Nat Commun ; 9(1): 4660, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405121

RESUMEN

Forgetting is a ubiquitous phenomenon that is actively promoted in many species. How and whether organisms' behavioral goals drive which memories are actively forgotten is unknown. Here we show that processes essential to controlling goal-directed behavior trigger active forgetting of distracting memories that interfere with behavioral goals. When rats need to retrieve particular memories to guide exploration, it reduces later retention of other memories encoded in that environment. As with humans, this retrieval-induced forgetting is competition-dependent, cue-independent and reliant on prefrontal control: Silencing the medial prefrontal cortex with muscimol abolishes the effect. cFos imaging reveals that prefrontal control demands decline over repeated retrievals as competing memories are forgotten successfully, revealing a key adaptive benefit of forgetting. Occurring in 88% of the rats studied, this finding establishes a robust model of how adaptive forgetting harmonizes memory with behavioral demands, permitting isolation of its circuit, cellular and molecular mechanisms.


Asunto(s)
Adaptación Fisiológica , Encéfalo/fisiología , Mamíferos/fisiología , Recuerdo Mental/fisiología , Animales , Masculino , Corteza Prefrontal/fisiología , Ratas Wistar
19.
Front Behav Neurosci ; 12: 79, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755331

RESUMEN

Many psychiatric disorders, despite their specific characteristics, share deficits in the cognitive domain including executive functions, emotional control and memory. However, memory deficits have been in many cases undervalued compared with other characteristics. The expression of Immediate Early Genes (IEGs) such as, c-fos, Egr1 and arc are selectively and promptly upregulated in learning and memory among neuronal subpopulations in regions associated with these processes. Changes in expression in these genes have been observed in recognition, working and fear related memories across the brain. Despite the enormous amount of data supporting changes in their expression during learning and memory and the importance of those cognitive processes in psychiatric conditions, there are very few studies analyzing the direct implication of the IEGs in mental illnesses. In this review, we discuss the role of some of the most relevant IEGs in relation with memory processes affected in psychiatric conditions.

20.
Elife ; 72018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29717980

RESUMEN

Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation.


Asunto(s)
Hipocampo/fisiología , Memoria , Corteza Perirrinal/fisiología , Corteza Prefrontal/fisiología , Receptor de Serotonina 5-HT2A/metabolismo , Animales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA