Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33242424

RESUMEN

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteogenómica , Neoplasias Encefálicas/inmunología , Niño , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Mutación/genética , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Fosfoproteínas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622792

RESUMEN

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.


Asunto(s)
Hongos/metabolismo , Lignina/metabolismo , Redes y Vías Metabólicas , Biopolímeros/metabolismo , Biotransformación , Ecosistema , Compuestos Orgánicos/metabolismo , Microbiología del Suelo
3.
Clin Proteomics ; 19(1): 30, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896960

RESUMEN

Acute Myeloid Leukemia (AML) affects 20,000 patients in the US annually with a five-year survival rate of approximately 25%. One reason for the low survival rate is the high prevalence of clonal evolution that gives rise to heterogeneous sub-populations of leukemic cells with diverse mutation spectra, which eventually leads to disease relapse. This genetic heterogeneity drives the activation of complex signaling pathways that is reflected at the protein level. This diversity makes it difficult to treat AML with targeted therapy, requiring custom patient treatment protocols tailored to each individual's leukemia. Toward this end, the Beat AML research program prospectively collected genomic and transcriptomic data from over 1000 AML patients and carried out ex vivo drug sensitivity assays to identify genomic signatures that could predict patient-specific drug responses. However, there are inherent weaknesses in using only genetic and transcriptomic measurements as surrogates of drug response, particularly the absence of direct information about phosphorylation-mediated signal transduction. As a member of the Clinical Proteomic Tumor Analysis Consortium, we have extended the molecular characterization of this cohort by collecting proteomic and phosphoproteomic measurements from a subset of these patient samples (38 in total) to evaluate the hypothesis that proteomic signatures can improve the ability to predict response to 26 drugs in AML ex vivo samples. In this work we describe our systematic, multi-omic approach to evaluate proteomic signatures of drug response and compare protein levels to other markers of drug response such as mutational patterns. We explore the nuances of this approach using two drugs that target key pathways activated in AML: quizartinib (FLT3) and trametinib (Ras/MEK), and show how patient-derived signatures can be interpreted biologically and validated in cell lines. In conclusion, this pilot study demonstrates strong promise for proteomics-based patient stratification to assess drug sensitivity in AML.

4.
Proc Natl Acad Sci U S A ; 115(5): E1012-E1021, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339515

RESUMEN

Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.


Asunto(s)
Presentación de Antígeno , Epigénesis Genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Variación Antigénica , Línea Celular , Chlorocebus aethiops , Metilación de ADN , Perros , Regulación hacia Abajo , Histonas/química , Humanos , Células de Riñón Canino Madin Darby , Complejo Mayor de Histocompatibilidad , Mutación , Sistemas de Lectura Abierta , Proteómica , Células Vero
5.
J Proteome Res ; 19(7): 2863-2872, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32407631

RESUMEN

Label-free quantitative proteomics has become an increasingly popular tool for profiling global protein abundances. However, one major limitation is the potential performance drift of the LC-MS platform over time, which, in turn, limits its utility for analyzing large-scale sample sets. To address this, we introduce an experimental and data analysis scheme based on a block design with common references within each block for enabling large-scale label-free quantification. In this scheme, a large number of samples (e.g., >100 samples) are analyzed in smaller and more manageable blocks, minimizing instrument drift and variability within individual blocks. Each designated block also contains common reference samples (e.g., controls) for normalization across all blocks. We demonstrated the robustness of this approach by profiling the proteome response of human macrophage THP-1 cells to 11 engineered nanomaterials at two different doses. A total of 116 samples were analyzed in six blocks, yielding an average coverage of 4500 proteins per sample. Following a common reference-based correction, 2537 proteins were quantified with high reproducibility without any imputation of missing values from 116 data sets. The data revealed the consistent quantification of proteins across all six blocks, as illustrated by the highly consistent abundances of house-keeping proteins in all samples and the high levels of correlation among samples from different blocks. The data also demonstrated that label-free quantification is robust and accurate enough to quantify even very subtle abundance changes as well as large fold-changes. Our streamlined workflow is easy to implement and can be readily adapted to other large cohort studies for reproducible label-free proteome quantification.


Asunto(s)
Proteoma , Proteómica , Cromatografía Liquida , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados , Células THP-1
6.
Regul Toxicol Pharmacol ; 110: 104507, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31669189

RESUMEN

The metabolic series approach has successfully linked internal dosimetries of metabolically related compounds reducing cost and time for chemical risk assessments. Here, we developed a physiologically based pharmacokinetic (PBPK) model in rats and humans for the propyl metabolic series including propyl acetate, 1-propanol, propionaldehyde, and propionic acid. Manufacturers use these compounds as organic solvents and intermediates during chemical synthesis. Public exposures can occur through using consumer products containing propyl compounds like cosmetics, aerosol sprays, or foods, and occupational exposures can occur at manufacturing facilities. To develop the PBPK model, we measured in vitro metabolism of propyl acetate in blood and liver S9 fractions. We measured concentrations of propyl compounds in blood following intravenous (iv) infusion of 13C-propanol or 13C-propionic acid and closed chamber inhalation exposures to propyl acetate or propanol in rats. Using these studies and other published data, we modified an existing PBPK model for the butyl metabolic series to simulate time course concentrations of propyl compounds in rats and humans. Consistent with measured in vitro and in vivo data, the optimized propyl series model predicts rapid clearance of propyl acetate, higher concentrations of propanol in blood from propyl acetate inhalation compared to propanol inhalation in rats but not in humans, and low concentrations of propionic acid in blood from exposures to propyl acetate or propanol. Regulators can use this model as a tool for propyl compound risk assessment by linking internal dosimetries under various exposure scenarios.


Asunto(s)
1-Propanol/farmacocinética , Acetatos/farmacocinética , Modelos Biológicos , 1-Propanol/sangre , Acetatos/sangre , Administración por Inhalación , Aldehídos/sangre , Animales , Femenino , Humanos , Infusiones Intravenosas , Exposición por Inhalación , Hígado/metabolismo , Masculino , Propionatos/sangre , Ratas Sprague-Dawley , Medición de Riesgo
7.
Anal Chem ; 91(18): 11952-11962, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31450886

RESUMEN

We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400-600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason-Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization.


Asunto(s)
Deuterio/química , Isótopos de Carbono/química , Espectrometría de Movilidad Iónica , Iones/química , Iones/aislamiento & purificación , Espectrometría de Masas , Isótopos de Nitrógeno/química
8.
Plant Physiol ; 177(1): 115-131, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523714

RESUMEN

Arogenate dehydratase (ADT) catalyzes the final step of phenylalanine (Phe) biosynthesis. Previous work showed that ADT-deficient Arabidopsis (Arabidopsis thaliana) mutants had significantly reduced lignin contents, with stronger reductions in lines that had deficiencies in more ADT isoforms. Here, by analyzing Arabidopsis ADT mutants using our phenomics facility and ultra-performance liquid chromatography-mass spectrometry-based metabolomics, we describe the effects of the modulation of ADT on photosynthetic parameters and secondary metabolism. Our data indicate that a reduced carbon flux into Phe biosynthesis in ADT mutants impairs the consumption of photosynthetically produced ATP, leading to an increased ATP/ADP ratio, the overaccumulation of transitory starch, and lower electron transport rates. The effect on electron transport rates is caused by an increase in proton motive force across the thylakoid membrane that down-regulates photosystem II activity by the high-energy quenching mechanism. Furthermore, quantitation of secondary metabolites in ADT mutants revealed reduced flavonoid, phenylpropanoid, lignan, and glucosinolate contents, including glucosinolates that are not derived from aromatic amino acids, and significantly increased contents of putative galactolipids and apocarotenoids. Additionally, we used real-time atmospheric monitoring mass spectrometry to compare respiration and carbon fixation rates between the wild type and adt3/4/5/6, our most extreme ADT knockout mutant, which revealed no significant difference in both night- and day-adapted plants. Overall, these data reveal the profound effects of altered ADT activity and Phe metabolism on secondary metabolites and photosynthesis with implications for plant improvement.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Hidroliasas/metabolismo , Fotosíntesis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Cromatografía Liquida/métodos , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Hidroliasas/genética , Espectrometría de Masas/métodos , Metabolómica/métodos , Mutación , Fotoperiodo , Metabolismo Secundario/genética
9.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29483291

RESUMEN

Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.


Asunto(s)
Asparagina/metabolismo , Fructosa/metabolismo , Microbioma Gastrointestinal/inmunología , Inflamación/metabolismo , Salmonelosis Animal/inmunología , Salmonelosis Animal/metabolismo , Salmonella enterica/inmunología , Salmonella enterica/metabolismo , Animales , Inflamación/inmunología , Inflamación/patología , Salmonelosis Animal/patología , Salmonella enterica/patogenicidad
10.
Anal Chem ; 90(1): 737-744, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29161511

RESUMEN

To better understand disease conditions and environmental perturbations, multiomic studies combining proteomic, lipidomic, and metabolomic analyses are vastly increasing in popularity. In a multiomic study, a single sample is typically extracted in multiple ways, and various analyses are performed using different instruments, most often based upon mass spectrometry (MS). Thus, one sample becomes many measurements, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injections. While some FIA systems have been created to address these challenges, many have limitations such as costly consumables, low pressure capabilities, limited pressure monitoring, and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at a range of flow rates (∼50 nL/min to 500 µL/min) to accommodate both low- and high-flow MS ionization sources. This system also functions at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system, and results showed a highly robust and reproducible platform capable of providing consistent performance over many days without carryover, as long as washing buffers specific to each molecular analysis were utilized.


Asunto(s)
Análisis de Inyección de Flujo/instrumentación , Espectrometría de Movilidad Iónica/instrumentación , Espectrometría de Masas/instrumentación , Escherichia coli/química , Proteínas de Escherichia coli/química , Análisis de Inyección de Flujo/métodos , Concentración de Iones de Hidrógeno , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Suelo/química
11.
Clin Proteomics ; 15: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087585

RESUMEN

BACKGROUND: Mass spectrometry-based proteomics has become a powerful tool for the identification and quantification of proteins from a wide variety of biological specimens. To date, the majority of studies utilizing tissue samples have been carried out on prospectively collected fresh frozen or optimal cutting temperature (OCT) embedded specimens. However, such specimens are often difficult to obtain, in limited in supply, and clinical information and outcomes on patients are inherently delayed as compared to banked samples. Annotated formalin fixed, paraffin embedded (FFPE) tumor tissue specimens are available for research use from a variety of tissue banks, such as from the surveillance, epidemiology and end results (SEER) registries' residual tissue repositories. Given the wealth of outcomes information associated with such samples, the reuse of archived FFPE blocks for deep proteomic characterization with mass spectrometry technologies would provide a valuable resource for population-based cancer studies. Further, due to the widespread availability of FFPE specimens, validation of specimen integrity opens the possibility for thousands of studies that can be conducted worldwide. METHODS: To examine the suitability of the SEER repository tissues for proteomic and phosphoproteomic analysis, we analyzed 60 SEER patient samples, with time in storage ranging from 7 to 32 years; 60 samples with expression proteomics and 18 with phosphoproteomics, using isobaric labeling. Linear modeling and gene set enrichment analysis was used to evaluate the impacts of collection site and storage time. RESULTS: All samples, regardless of age, yielded suitable protein mass after extraction for expression analysis and 18 samples yielded sufficient mass for phosphopeptide analysis. Although peptide, protein, and phosphopeptide identifications were reduced by 50, 20 and 76% respectively, from comparable OCT specimens, we found no statistically significant differences in protein quantitation correlating with collection site or specimen age. GSEA analysis of GO-term level measurements of protein abundance differences between FFPE and OCT embedded specimens suggest that the formalin fixation process may alter representation of protein categories in the resulting dataset. CONCLUSIONS: These studies demonstrate that residual FFPE tissue specimens, of varying age and collection site, are a promising source of protein for proteomic investigations if paired with rigorously verified mass spectrometry workflows.

12.
Rapid Commun Mass Spectrom ; 31(5): 447-456, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27958645

RESUMEN

RATIONALE: The use of dried blood spots (DBS) has many advantages over traditional plasma and serum samples such as the smaller blood volume required, storage at room temperature, and ability to sample in remote locations. However, understanding the robustness of different analytes in DBS samples is essential, especially in older samples collected for longitudinal studies. METHODS: Here we analyzed the stability of polar metabolites and lipids in DBS samples collected in 2000-2001 and stored at room temperature. The identified and statistically significant molecules were then compared to matched serum samples stored at -80°C to determine if the DBS samples could be effectively used in a longitudinal study following metabolic disease. RESULTS: A total of 400 polar metabolites and lipids were identified in the serum and DBS samples using gas chromatograph/mass spectrometry (GC/MS), liquid chromatography (LC)/MS, and LC/ion mobility spectrometry-MS (LC/IMS-MS). The identified polar metabolites overlapped well between the sample types, though only one statistically significant metabolite was conserved in a case-control study of older diabetic males with low amounts of high-density lipoproteins and high body mass indices, triacylglycerides and glucose levels when compared to non-diabetic patients with normal levels, indicating that degradation in the DBS samples affects polar metabolite quantitation. Differences in the lipid identifications indicated that some oxidation occurs in the DBS samples. However, 36 statistically significant lipids correlated in both sample types. CONCLUSIONS: The difference in the number of statistically significant polar metabolites and lipids indicated that the lipids did not degrade to as great of a degree as the polar metabolites in the DBS samples and lipid quantitation was still possible. Copyright © 2016 John Wiley & Sons, Ltd.

13.
Analyst ; 142(3): 442-448, 2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28091625

RESUMEN

The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.


Asunto(s)
Bacterias/aislamiento & purificación , Lípidos/análisis , Metabolómica , Proteómica , Virus/aislamiento & purificación , Línea Celular , Células Epiteliales , Humanos , Espectrometría de Masas , Proteínas , Inactivación de Virus
14.
PLoS Pathog ; 10(2): e1003938, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586154

RESUMEN

The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


Asunto(s)
Leishmania donovani/genética , Leishmania donovani/metabolismo , Proteoma/metabolismo , Estrés Fisiológico/fisiología , Cromatografía Liquida , Humanos , Purinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
15.
Analyst ; 141(5): 1649-59, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26734689

RESUMEN

Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes.


Asunto(s)
Cromatografía Liquida/métodos , Lípidos/química , Espectrometría de Masas/métodos , Metabolómica/métodos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Lípidos/aislamiento & purificación , Estereoisomerismo
16.
PLoS Pathog ; 8(3): e1002584, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22457619

RESUMEN

Dengue virus causes ∼50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Metabolismo de los Lípidos , Aedes/citología , Animales , Permeabilidad de la Membrana Celular/inmunología , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/metabolismo , Homeostasis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Membranas Intracelulares/inmunología , Membranas Intracelulares/virología , Espectrometría de Masas , Análisis de Componente Principal , Replicación Viral
17.
PLoS Genet ; 7(6): e1001393, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695224

RESUMEN

The relationships between the levels of transcripts and the levels of the proteins they encode have not been examined comprehensively in mammals, although previous work in plants and yeast suggest a surprisingly modest correlation. We have examined this issue using a genetic approach in which natural variations were used to perturb both transcript levels and protein levels among inbred strains of mice. We quantified over 5,000 peptides and over 22,000 transcripts in livers of 97 inbred and recombinant inbred strains and focused on the 7,185 most heritable transcripts and 486 most reliable proteins. The transcript levels were quantified by microarray analysis in three replicates and the proteins were quantified by Liquid Chromatography-Mass Spectrometry using O(18)-reference-based isotope labeling approach. We show that the levels of transcripts and proteins correlate significantly for only about half of the genes tested, with an average correlation of 0.27, and the correlations of transcripts and proteins varied depending on the cellular location and biological function of the gene. We examined technical and biological factors that could contribute to the modest correlation. For example, differential splicing clearly affects the analyses for certain genes; but, based on deep sequencing, this does not substantially contribute to the overall estimate of the correlation. We also employed genome-wide association analyses to map loci controlling both transcript and protein levels. Surprisingly, little overlap was observed between the protein- and transcript-mapped loci. We have typed numerous clinically relevant traits among the strains, including adiposity, lipoprotein levels, and tissue parameters. Using correlation analysis, we found that a low number of clinical trait relationships are preserved between the protein and mRNA gene products and that the majority of such relationships are specific to either the protein levels or transcript levels. Surprisingly, transcript levels were more strongly correlated with clinical traits than protein levels. In light of the widespread use of high-throughput technologies in both clinical and basic research, the results presented have practical as well as basic implications.


Asunto(s)
Perfilación de la Expresión Génica , Variación Genética , Proteoma/análisis , Empalme Alternativo , Animales , Estudio de Asociación del Genoma Completo , Ratones , Proteoma/genética , Proteómica , ARN Mensajero/metabolismo
18.
Cell Rep Med ; 5(1): 101359, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232702

RESUMEN

Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteogenómica , Humanos , Proteómica/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Genómica/métodos , Mutación
19.
Cancer Cell ; 42(7): 1217-1238.e19, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981438

RESUMEN

Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Transducción de Señal , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Glioma/genética , Glioma/patología , Glioma/metabolismo , Mutación , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Fosforilación , Clasificación del Tumor , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
20.
Mol Cell Proteomics ; 10(2): M110.001479, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20627868

RESUMEN

Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome.


Asunto(s)
Pepsina A/química , Proteómica/métodos , Tripsina/química , Automatización , Proteínas Bacterianas/química , Cromatografía Liquida/métodos , Concentración de Iones de Hidrógeno , Espectrometría de Masas/métodos , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteoma , Shewanella/metabolismo , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA