Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493182

RESUMEN

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Asunto(s)
Fusión Celular , Furina/genética , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus , Animales , COVID-19 , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Estructura Terciaria de Proteína , SARS-CoV-2 , Serina Endopeptidasas , Células Vero
2.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34473204

RESUMEN

The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3's role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Células HEK293 , Humanos
3.
Nat Commun ; 12(1): 5333, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504087

RESUMEN

The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle.


Asunto(s)
COVID-19/metabolismo , Membrana Celular/metabolismo , Células Gigantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Unión Proteica , Dominios Proteicos , Proteómica , Células Vero , Ensamble de Virus/genética
4.
FEBS Lett ; 593(17): 2452-2465, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31344261

RESUMEN

The Golgi apparatus is an important site for the modification of most secreted and membrane proteins. Glycan processing is the major class of modification and is mediated by a large number of Golgi-resident glycosyltransferases and glycosidases. These Golgi enzymes are largely type II transmembrane domain (TMD) proteins consisting of a short N-terminal cytosolic tail, a relatively short TMD and a lumenal 'stem/stalk' region which acts as a spacer between the catalytic domain and the lipid bilayer. The cytosolic tail, TMD, and stem together make what is termed the CTS domain which is responsible for the specific localisation of these enzymes within sub-Golgi compartments via multiple mechanisms. In addition, the catalytic domains of some Golgi enzymes are secreted as a consequence of proteolytic cleavage within their TMDs or stem regions. Finally, there is evidence to suggest that when the retention of Golgi enzymes is perturbed they are targeted for lysosomal degradation.


Asunto(s)
Aparato de Golgi/enzimología , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Humanos , Dominios Proteicos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA