Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 238: 118270, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34144160

RESUMEN

Pharmacological MRI (phMRI) studies seek to capture changes in brain haemodynamics in response to a drug. This provides a methodological platform for the evaluation of novel therapeutics, and when applied to disease states, may provide diagnostic or mechanistic information pertaining to common brain disorders such as dementia. Changes to brain perfusion and blood-cerebrospinal fluid barrier (BCSFB) function can be probed, non-invasively, by arterial spin labelling (ASL) and blood-cerebrospinal fluid barrier arterial spin labelling (BCSFB-ASL) MRI respectively. Here, we introduce a method for simultaneous recording of pharmacological perturbation of brain perfusion and BCSFB function using interleaved echo-time ASL, applied to the anesthetized mouse brain. Using this approach, we capture an exclusive decrease in BCSFB-mediated delivery of arterial blood water to ventricular CSF, following anti-diuretic hormone, vasopressin, administration. The commonly used vasodilatory agent, CO2, induced similar increases (~21%) in both cortical perfusion and the BCSFB-ASL signal. Furthermore, we present evidence that caffeine administration triggers a marked decrease in BCSFB-mediated labelled water delivery (41%), with no significant changes in cortical perfusion. Finally, we demonstrate a marked decrease in the functional response of the BCSFB to, vasopressin, in the aged vs adult brain. Together these data, the first of such kind, highlight the value of this translational approach to capture simultaneous and differential pharmacological modulation of vessel tone at the blood brain barrier and BCSFB and how this relationship may be modified in the ageing brain.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cafeína/farmacología , Masculino , Ratones , Marcadores de Spin , Vasoconstrictores/farmacología , Vasopresinas/farmacología
2.
Neuroimage ; 245: 118755, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34826596

RESUMEN

The study of brain clearance mechanisms is an active area of research. While we know that the cerebrospinal fluid (CSF) plays a central role in one of the main existing clearance pathways, the exact processes for the secretion of CSF and the removal of waste products from tissue are under debate. CSF is thought to be created by the exchange of water and ions from the blood, which is believed to mainly occur in the choroid plexus. This exchange has not been thoroughly studied in vivo. We propose a modified arterial spin labeling (ASL) MRI sequence and image analysis to track blood water as it is transported to the CSF, and to characterize its exchange from blood to CSF. We acquired six pseudo-continuous ASL sequences with varying labeling duration (LD) and post-labeling delay (PLD) and a segmented 3D-GRASE readout with a long echo train (8 echo times (TE)) which allowed separation of the very long-T2 CSF signal. ASL signal was observed at long TEs (793 ms and higher), indicating presence of labeled water transported from blood to CSF. This signal appeared both in the CSF proximal to the choroid plexus and in the subarachnoid space surrounding the cortex. ASL signal was separated into its blood, gray matter and CSF components by fitting a triexponential function with T2s taken from literature. A two-compartment dynamic model was introduced to describe the exchange of water through time and TE. From this, a water exchange time from the blood to the CSF (Tbl->CSF) was mapped, with an order of magnitude of approximately 60 s.


Asunto(s)
Agua Corporal/metabolismo , Líquido Cefalorraquídeo/metabolismo , Circulación Cerebrovascular/fisiología , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Marcadores de Spin , Espacio Subaracnoideo/diagnóstico por imagen , Espacio Subaracnoideo/metabolismo
3.
Magn Reson Med ; 85(1): 326-333, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910547

RESUMEN

PURPOSE: A fundamental goal in the drive to understand and find better treatments for dementia is the identification of the factors that render the aging brain vulnerable to neurodegenerative disease. Recent evidence indicates the integrity of the blood-brain barrier (BBB) to be an important component of functional failure underlying age-related cognitive decline. Practical and sensitive measurement is necessary, therefore, to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients. Here, we investigated changes in BBB permeability to endogenous blood water in the aging brain. METHODS: A multiple-echo-time arterial spin-labeling MRI technique, implemented on a 9.4T Bruker imaging system, was applied to 7- and 27-month-old mice to measure changes in water permeability across the BBB with aging. RESULTS: We observed that BBB water permeability was 32% faster in aged mice. This occurred along with a 2.1-fold increase in mRNA expression of aquaporin-4 water channels and a 7.1-fold decrease in mRNA expression of α-syntrophin protein, which anchors aquaporin-4 to the BBB. CONCLUSION: Age-related changes to water permeability across the BBB can be captured using noninvasive noncontrast MRI techniques.


Asunto(s)
Barrera Hematoencefálica , Enfermedades Neurodegenerativas , Envejecimiento , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Ratones , Permeabilidad , Agua
4.
Brain ; 143(8): 2576-2593, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32705145

RESUMEN

The glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-ß and tau, which accumulate in the brain in Alzheimer's disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by the glymphatic pathway, allows for its neuron-to-neuron propagation, and the regional progression of tauopathy in the disorder. The glymphatic system therefore represents an exciting new target for Alzheimer's disease. Here we aim to understand the involvement of glymphatic CSF-ISF exchange in tau pathology. First, we demonstrate impaired CSF-ISF exchange and AQP4 polarization in a mouse model of tauopathy, suggesting that this clearance pathway may have the potential to exacerbate or even induce pathogenic accumulation of tau. Subsequently, we establish the central role of AQP4 in the glymphatic clearance of tau from the brain; showing marked impaired glymphatic CSF-ISF exchange and tau protein clearance using the novel AQP4 inhibitor, TGN-020. As such, we show that this system presents as a novel druggable target for the treatment of Alzheimer's disease, and possibly other neurodegenerative diseases alike.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Neuroimage ; 188: 515-523, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557661

RESUMEN

There is currently a lack of non-invasive tools to assess water transport in healthy and pathological brain tissue. Aquaporin-4 (AQP4) water channels are central to many water transport mechanisms, and emerging evidence also suggests that AQP4 plays a key role in amyloid-ß (Aß) clearance, possibly via the glymphatic system. Here, we present the first non-invasive technique sensitive to AQP4 channels polarised at the blood-brain interface (BBI). We apply a multiple echo time (multi-TE) arterial spin labelling (ASL) MRI technique to the mouse brain to assess BBI water permeability via calculation of the exchange time (Texw), the time for magnetically labelled intravascular water to exchange across the BBI. We observed a 31% increase in exchange time in AQP4-deficient (Aqp4-/-) mice (452 ±â€¯90 ms) compared to their wild-type counterparts (343 ±â€¯91 ms) (p = 0.01), demonstrating the sensitivity of the technique to the lack of AQP4 water channels. More established, quantitative MRI parameters: arterial transit time (δa), cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) detected no significant changes with the removal of AQP4. This clinically relevant tool may be crucial to better understand the role of AQP4 in water transport across the BBI, as well as clearance of proteins in neurodegenerative conditions such as Alzheimer's disease.


Asunto(s)
Acuaporina 4/fisiología , Transporte Biológico/fisiología , Barrera Hematoencefálica/fisiología , Agua Corporal , Sistema Glinfático/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Femenino , Sistema Glinfático/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Marcadores de Spin
6.
NMR Biomed ; 32(8): e4105, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31172591

RESUMEN

Arterial spin labeling (ASL)-MRI can noninvasively map cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), potential biomarkers of cognitive impairment and dementia. Mouse models of disease are frequently used in translational MRI studies, which are commonly performed under anesthesia. Understanding the influence of the specific anesthesia protocol used on the measured parameters is important for accurate interpretation of hemodynamic studies with mice. Isoflurane is a frequently used anesthetic with vasodilative properties. Here, the influence of three distinct isoflurane protocols was studied with pseudo-continuous ASL in two different mouse strains. The first protocol was a free-breathing set-up with medium concentrations, the second a free-breathing set-up with low induction and maintenance concentrations, and the third a set-up with medium concentrations and mechanical ventilation. A protocol with the vasoconstrictive anesthetic medetomidine was used as a comparison. As expected, medium isoflurane anesthesia resulted in significantly higher CBF and lower CVR values than medetomidine (median whole-brain CBF of 157.7 vs 84.4 mL/100 g/min and CVR of 0.54 vs 51.7% in C57BL/6 J mice). The other two isoflurane protocols lowered the CBF and increased the CVR values compared with medium isoflurane anesthesia, without obvious differences between them (median whole-brain CBF of 138.9 vs 131.7 mL/100 g/min and CVR of 10.0 vs 9.6%, in C57BL/6 J mice). Furthermore, CVR was shown to be dependent on baseline CBF, regardless of the anesthesia protocol used.


Asunto(s)
Anestesia , Encéfalo/fisiología , Arterias Cerebrales/fisiología , Hemodinámica/efectos de los fármacos , Isoflurano/farmacología , Marcadores de Spin , Animales , Encéfalo/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Femenino , Masculino , Ratones Endogámicos C57BL
7.
J Neurosci ; 35(13): 5284-92, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834053

RESUMEN

The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.


Asunto(s)
Adenosina Trifosfato/metabolismo , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética , Transducción de Señal , Corteza Somatosensorial/fisiología , Fosfatasa Ácida , Adenosina Trifosfato/antagonistas & inhibidores , Animales , Circulación Cerebrovascular/efectos de los fármacos , Estimulación Eléctrica , Miembro Anterior/fisiología , Neuroimagen Funcional , Masculino , Microinyecciones , Proteínas Tirosina Fosfatasas/administración & dosificación , Proteínas Tirosina Fosfatasas/genética , Antagonistas de Receptores Purinérgicos P1/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo
8.
Neuroimage ; 139: 337-345, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27296012

RESUMEN

The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Femenino , Cuerpos Geniculados/fisiología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador , Colículos Superiores/fisiología , Corteza Visual/fisiología
9.
Br J Cancer ; 114(8): 897-904, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27031853

RESUMEN

BACKGROUND: Non-invasive measures of tumour vascular perfusion are desirable, in order to assess response to vascular targeting (or modifying) therapies. In this study, hepatic arterial spin labelling (ASL) magnetic resonance imaging (MRI) was investigated to measure acute changes in perfusion of colorectal cancer in the liver, in response to vascular disruption therapy with OXi4503. METHODS: SW1222 and LS174T tumours were established in the liver of MF1 nu/nu mice via intrasplenic injection. Perfusion and R2(*) MRI measurements were acquired with an Agilent 9.4T horizontal bore scanner, before and at 90 min after 40 mg kg(-1) OXi4503. RESULTS: A significant decrease in SW1222 tumour perfusion was observed (-43±33%, P<0.005). LS174T tumours had a significantly lower baseline level of perfusion. Intrinsic susceptibility MRI showed a significant increase in R2(*) in LS174T tumours (28±25%, P<0.05). An association was found between the change in tumour perfusion and the proximity to large vessels, with pre-treatment blood flow predictive of subsequent response. Histological evaluation confirmed the onset of necrosis and evidence of heterogeneous response between tumour deposits. CONCLUSIONS: Hepatic ASL-MRI can detect acute response to targeted tumour vascular disruption entirely non-invasively. Hepatic ASL of liver tumours has potential for use in a clinical setting.


Asunto(s)
Arteria Hepática/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Hígado/patología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Femenino , Angiografía por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Desnudos , Marcadores de Spin
10.
Magn Reson Med ; 73(2): 731-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24634098

RESUMEN

PURPOSE: Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever-increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (µMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. METHODS: We developed two protocols for designing experimental procedures for diffusion µMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. RESULTS: The protocols provide DTI data in 24 min per direction at 75 µm isotropic using a three-dimensional fast spin-echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. CONCLUSION: We present guidelines for designing diffusion µMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Embrión de Mamíferos/citología , Imagen por Resonancia Magnética/métodos , Microscopía/métodos , Médula Espinal/citología , Médula Espinal/embriología , Animales , Aumento de la Imagen/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Diagnóstico Prenatal/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Manejo de Especímenes/métodos
11.
J Cereb Blood Flow Metab ; 44(4): 508-515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37873754

RESUMEN

Perivascular spaces mediate a complex interaction between cerebrospinal fluid and brain tissue that may be an important pathway for solute waste clearance. Their structural or functional derangement may contribute to the development of age-related neurogenerative conditions. Here, we employed a non-invasive low b-value diffusion-weighted ECG-gated MRI method to capture perivascular fluid movement around the middle cerebral artery of the anaesthetised rat brain. Using this method, we show that such MRI estimates of perivascular fluid movement directionality are highly sensitive to the cardiac cycle. We then show that these measures of fluid movement directionality are decreased in the angiotensin-II pharmacological model of acute hypertension, with an associated dampening of vessel pulsatility. This translational MRI method may, therefore, be useful to monitor derangement of perivascular fluid movement associated with cardiovascular pathologies, such as hypertension, in order to further our understanding of perivascular function in neurology.


Asunto(s)
Hipertensión , Arteria Cerebral Media , Ratas , Animales , Imagen por Resonancia Magnética , Hipertensión/metabolismo , Difusión , Encéfalo/irrigación sanguínea , Líquido Cefalorraquídeo/metabolismo
12.
Alzheimers Res Ther ; 16(1): 71, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576025

RESUMEN

BACKGROUND: The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS: In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS: Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS: These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.


Asunto(s)
Enfermedad de Alzheimer , Sistema Glinfático , Niacinamida/análogos & derivados , Tiadiazoles , Ratones , Animales , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Proteínas tau/metabolismo
13.
Dalton Trans ; 53(19): 8429-8442, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686445

RESUMEN

Recently, layered rare-earth hydroxides (LRHs) have received growing attention in the field of theranostics. We have previously reported the hydrothermal synthesis of layered terbium hydroxide (LTbH), which exhibited high biocompatibility, reversible uptake of a range of model drugs, and release-sensitive phosphorescence. Despite these favourable properties, LTbH particles produced by the reported method suffered from poor size-uniformity (670 ± 564 nm), and are thus not suitable for therapeutic applications. To ameliorate this issue, we first derive an optimised hydrothermal synthesis method to generate LTbH particles with a high degree of homogeneity and reproducibility, within a size range appropriate for in vivo applications (152 ± 59 nm, n = 6). Subsequently, we apply this optimised method to synthesise a selected range of LRH materials (R = Pr, Nd, Gd, Dy, Er, Yb), four of which produced particles with an average size under 200 nm (Pr, Nd, Gd, and Dy) without the need for further optimisation. Finally, we incorporate Gd and Tb into LRHs in varying molar ratios (1 : 3, 1 : 1, and 3 : 1) and assess the combined magnetic relaxivity and phosphorescence properties of the resultant LRH materials. The lead formulation, LGd1.41Tb0.59H, was demonstrated to significantly shorten the T2 relaxation time of water (r2 = 52.06 mM-1 s-1), in addition to exhibiting a strong phosphorescence signal (over twice that of the other LRH formulations, including previously reported LTbH), therefore holding great promise as a potential multi-modal medical imaging probe.


Asunto(s)
Hidróxidos , Metales de Tierras Raras , Tamaño de la Partícula , Hidróxidos/química , Metales de Tierras Raras/química , Imagen por Resonancia Magnética , Imagen Multimodal , Humanos
14.
Neuroimage ; 66: 634-41, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23128081

RESUMEN

The combination of optogenetics and functional magnetic resonance imaging (fMRI) is referred to as opto-fMRI. Optogenetics utilises genetic engineering to introduce light sensitive actuator proteins into cells. Functional MRI (fMRI) is a specialist form of magnetic resonance imaging concerned with imaging changes in blood flow and oxygenation, linked to regional variation in metabolic activity, in the brain. This study describes a methodological concern regarding the effects of light delivery into the brain for the purposes of opto-fMRI. We show that blue light delivery to the naïve rat brain causes profound fMRI responses, despite the absence of optogenetic activation. We demonstrate that these fMRI responses are dependent upon laser power and show that the laser causes significant heating. We identify how heating impacts upon the MR signal causing NMR frequency shifts, and T1 and T2* changes. This study brings attention to a possible confounder which must be taken into account when opto-fMRI experiments are designed.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Optogenética/métodos , Animales , Ratas , Ratas Sprague-Dawley , Marcadores de Spin
15.
Magn Reson Med ; 69(1): 238-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22411842

RESUMEN

MRI is important for the assessment of cardiac structure and function in preclinical studies of cardiac disease. Arterial spin labeling techniques can be used to measure perfusion noninvasively. In this study, an electrocardiogram-gated Look-Locker sequence with segmented k-space acquisition has been implemented to acquire single slice arterial spin labeling data sets in 15 min in the mouse heart. A data logger was introduced to improve data quality by: (1) allowing automated rejection of respiration-corrupted images, (2) providing additional prospective gating to improve consistency of acquisition timing, and (3) allowing the recombination of uncorrupted k-space lines from consecutive data sets to reduce respiration corruption. Finally, variability and repeatability of perfusion estimation within-session, between-session, between-animal, and between image rejection criteria were assessed in mice. The criterion used to reject images from the T(1) fit was shown to affect the perfusion estimation. These data showed that the between-animal coefficient of variability (24%) was greater than the between-session variability (17%) and within-session variability (11%). Furthermore, the magnitude of change in perfusion required to detect differences was 30% (within-session) and 55% (between-session) according to Bland-Altman repeatability analysis. These technique developments and repeatability statistics will provide a platform for future preclinical studies applying cardiac arterial spin labeling.


Asunto(s)
Circulación Coronaria , Electrocardiografía , Imagen por Resonancia Magnética/métodos , Animales , Procesamiento de Imagen Asistido por Computador , Ratones , Marcadores de Spin
16.
Magn Reson Med ; 70(5): 1380-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23213043

RESUMEN

PURPOSE: Worldwide efforts to understand developmental processes demand new high-resolution 3D imaging methods to detect the consequences of gene function in embryo development and diseases. Encouragingly, recent studies have shown that MRI contrast agents can highlight specific tissue structures in ex vivo adult mouse brains. MR imaging of mouse embryos is currently limited by a lack of tissue staining capabilities that would provide the flexibility and specificity offered by histological stains conventionally used for mouse embryo phenotyping. METHODS: The MRI staining properties of two readily available contrast agents, Mn-DPDP and Gd-DTPA, were investigated in mid-gestation mouse embryos. RESULTS: Brain tissue substructures not normally visible using MRI were detected. Mn-DPDP and Gd-DTPA provided spatially distinct tissue staining patterns. An initial assessment indicated that these agents utilized independent contrast enhancement mechanisms. Mn-DPDP was identified as a potential MRI contrast agent for enhancement of mouse embryonic cellular density and enabled identification of regions containing populations of neural stem and progenitor cells within the intact embryo brain. CONCLUSIONS: Different contrast agents may be used to provide tissue-specific contrast enhancement, suggesting that a host of specialized MRI stains may be available for probing the developing mouse brain and investigating developmental and disease mechanisms.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/embriología , Ácido Edético/análogos & derivados , Gadolinio DTPA , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/veterinaria , Fosfato de Piridoxal/análogos & derivados , Animales , Medios de Contraste , Diagnóstico Diferencial , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Cell Rep ; 42(12): 113514, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38041814

RESUMEN

During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.


Asunto(s)
Hipoxia Encefálica , Nitritos , Humanos , Nitritos/metabolismo , Astrocitos/metabolismo , Óxido Nítrico/metabolismo , Molibdeno/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Mitocondrias/metabolismo , Hipoxia Encefálica/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Circulación Cerebrovascular
18.
Neuroimage ; 60(2): 1149-55, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22266177

RESUMEN

Early inflammation following status epilepticus has been implicated in the development of epilepsy and the evolution of brain injury, yet its precise role remains unclear. The development of non-invasive imaging markers of inflammation would enable researchers to test this hypothesis in vivo and study its temporal progression in relation to epileptogenic insults. In this study we have investigated the potential of a targeted magnetic resonance imaging contrast agent--vascular cell adhesion molecule 1 antibody labelled iron oxide--to image the inflammatory process following status epilepticus in the rat lithium-pilocarpine model. Intravascular administration of the targeted contrast agent was performed at approximately 1 day following status epilepticus. The control group received diazepam prior to pilocarpine to prevent status epilepticus. Magnetic resonance imaging of rats was performed before and after contrast administration. Comparison with quantitative T2 measurements was also performed. At the end of the study, brains were removed for ex vivo magnetic resonance imaging and histology. Marked focal hypointensities caused by contrast agent binding were observed on in vivo magnetic resonance images in the post status epilepticus group. In particular these occurred in the periventricular organs, the hippocampus and the cerebral cortex. Relatively little contrast agent binding was observed in the control group. T2 relaxation times were not significantly increased for the hippocampus or the cerebral cortex in post status epilepticus animals. These results demonstrate the feasibility of in vivo imaging of seizure-induced inflammation in an animal model of epilepsy. The antibody targeted MRI contrast agent identified regions of acute inflammation following status epilepticus and may provide an early marker of brain injury. This technique could be used to determine the role of inflammation in models of epileptogenesis and to study the potential for anti-inflammatory therapeutic interventions.


Asunto(s)
Encéfalo/patología , Medios de Contraste , Compuestos Férricos , Inflamación/etiología , Inflamación/patología , Imagen por Resonancia Magnética/métodos , Estado Epiléptico/complicaciones , Molécula 1 de Adhesión Celular Vascular , Animales , Masculino , Microesferas , Ratas , Ratas Sprague-Dawley
19.
Front Mol Neurosci ; 15: 964632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117909

RESUMEN

Chronic hypertension is a major risk factor for the development of neurodegenerative disease, yet the etiology of hypertension-driven neurodegeneration remains poorly understood. Forming a unique interface between the systemic circulation and the brain, the blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) has been proposed as a key site of vulnerability to hypertension that may initiate downstream neurodegenerative processes. However, our ability to understand BCSFB's role in pathological processes has, to date, been restricted by a lack of non-invasive functional measurement techniques. In this work, we apply a novel Blood-Cerebrospinal Fluid Barrier Arterial Spin Labeling (BCSFB-ASL) Magnetic resonance imaging (MRI) approach with the aim of detecting possible derangement of BCSFB function in the Spontaneous Hypertensive Rat (SHR) model using a non-invasive, translational technique. SHRs displayed a 36% reduction in BCSFB-mediated labeled arterial water delivery into ventricular cerebrospinal fluid (CSF), relative to normotensive controls, indicative of down-regulated choroid plexus function. This was concomitant with additional changes in brain fluid biomarkers, namely ventriculomegaly and changes in CSF composition, as measured by T1 lengthening. However, cortical cerebral blood flow (CBF) measurements, an imaging biomarker of cerebrovascular health, revealed no measurable change between the groups. Here, we provide the first demonstration of BCSFB-ASL in the rat brain, enabling non-invasive assessment of BCSFB function in healthy and hypertensive rats. Our data highlights the potential for BCSFB-ASL to serve as a sensitive early biomarker for hypertension-driven neurodegeneration, in addition to investigating the mechanisms relating hypertension to neurodegenerative outcomes.

20.
Nat Commun ; 13(1): 2125, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440557

RESUMEN

Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO2-sensitive vasodilatory brain mechanism with surplus of exogenous CO2 or disruption of brain CO2/HCO3- transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity.


Asunto(s)
Acoplamiento Neurovascular , Animales , Dióxido de Carbono/metabolismo , Corteza Cerebral/metabolismo , Circulación Cerebrovascular , Ratones , Ratones Endogámicos C57BL , Ratas , Simportadores de Sodio-Bicarbonato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA