Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2303119121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349880

RESUMEN

Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.


Asunto(s)
Capilares , Oxígeno , Animales , Ratones , Capilares/fisiología , Proteína alfa-5 de Unión Comunicante/metabolismo , Uniones Comunicantes/metabolismo , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo
2.
Microcirculation ; 29(3): e12756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35289024

RESUMEN

OBJECTIVE: The myogenic response sets the foundation for blood flow control. Recent findings suggest a role for G protein-coupled receptors (GPCR) and signaling pathways tied to the generation of reactive oxygen species (ROS). In this regard, this study ascertained the impact of NADPH oxidase (Nox) on myogenic tone in rat cerebral resistance arteries. METHODS: The study employed real-time qPCR (RT-qPCR), pressure myography, and immunohistochemistry. RESULTS: Gq blockade abolished myogenic tone in rat cerebral arteries, linking GPCR to mechanosensation. Subsequent work revealed that general (TEMPOL) and mitochondrial specific (MitoTEMPO) ROS scavengers had little impact on myogenic tone, whereas apocynin, a broad spectrum Nox inhibitor, initiated transient dilation. RT-qPCR revealed Nox1 and Nox2 mRNA expression in smooth muscle cells. Pressure myography defined Nox1 rather than Nox2 is facilitating myogenic tone. We rationalized that Nox1-generated ROS was initiating this response by impairing the ability of the CaV 3.2 channel to elicit negative feedback via BKCa . This hypothesis was confirmed in functional experiments. The proximity ligation assay further revealed that Nox1 and CaV 3.2 colocalize within 40 nm of one another. CONCLUSIONS: Our data highlight that vascular pressurization augments Nox1 activity and ensuing ROS production facilitates myogenic tone by limiting Ca2+ influx via CaV 3.2.


Asunto(s)
Músculo Liso Vascular , NADPH Oxidasas , Animales , Arterias Cerebrales/metabolismo , Músculo Liso Vascular/fisiología , Miografía , Ratas , Especies Reactivas de Oxígeno/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L770-L784, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33624555

RESUMEN

Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.


Asunto(s)
Reprogramación Celular , Hipoxia Fetal/fisiopatología , Feto/fisiopatología , Hipoxia/fisiopatología , Metaboloma , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Arteria Pulmonar/fisiopatología , Altitud , Animales , Calcio , Femenino , Edad Gestacional , Embarazo , Ovinos
4.
Annu Rev Pharmacol Toxicol ; 58: 391-410, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28968190

RESUMEN

Arterial tone is coordinated among vessel segments to optimize nutrient transport and organ function. Coordinated vasomotor activity is remarkable to observe and depends on stimuli, sparsely generated in tissue, eliciting electrical responses that conduct lengthwise among electrically coupled vascular cells. The conducted response is the focus of this topical review, and in this regard, the authors highlight literature that advances an appreciation of functional significance, cellular mechanisms, and biophysical principles. Of particular note, this review stresses that conduction is enabled by a defined pattern of charge movement along the arterial wall as set by three key parameters (tissue structure, gap junctional resistivity, and ion channel activity). The impact of disease on conduction is carefully discussed, as are potential strategies to restore this key biological response and, along with it, the match of blood flow delivery with tissue energetic demand.


Asunto(s)
Endotelio Vascular/fisiología , Músculo Liso Vascular/fisiología , Sistema Vasomotor/fisiología , Animales , Humanos , Transducción de Señal/fisiología
5.
Arterioscler Thromb Vasc Biol ; 40(3): 733-750, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31826653

RESUMEN

OBJECTIVE: Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS: Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.


Asunto(s)
Isquemia Encefálica/fisiopatología , Comunicación Celular , Circulación Cerebrovascular , Células Endoteliales , Uniones Comunicantes , Arteria Cerebral Media/inervación , Acoplamiento Neurovascular , Accidente Cerebrovascular/fisiopatología , Adulto , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Simulación por Computador , Conexinas/genética , Conexinas/metabolismo , Modelos Animales de Enfermedad , Conductividad Eléctrica , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Femenino , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Homeostasis , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Arteria Cerebral Media/metabolismo , Arteria Cerebral Media/ultraestructura , Modelos Cardiovasculares , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Proteína alfa-5 de Unión Comunicante
6.
Am J Physiol Heart Circ Physiol ; 319(6): H1276-H1289, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986968

RESUMEN

Vasomotor responses conduct among resistance arteries to coordinate blood flow delivery pursuant to energetic demand. Conduction is set by the electrical and mechanical properties of vascular cells, the former tied to how gap junctions and ion channels distribute and dissipate charge, respectively. These membrane proteins are subject to modulation; thus, conduction could be viewed as "pliant" to the current regulatory state. This study used in silico approaches to conceptualize electrical pliancy and to illustrate how gap junctional and ion channel properties distinctly impact conduction along a single skeletal muscle artery or a branching cerebrovascular network. Initial simulations revealed how vascular cells encoded with electrotonic properties best reproduced spreading behavior; the endothelium's importance as a charge source and a longitudinal conduit was readily observed. Alterations in gap junctional conductance produced unique electrical fingerprints: 1) decreased endothelial coupling impaired longitudinal but enhanced radial spread, and 2) reduced myoendothelial coupling limited radial but enhanced longitudinal spread. Subsequent simulations illustrated how tuning ion channel activity, e.g., inward rectifying- and voltage-gated K+ channels, modified charge dissipation, resting membrane potential, and the spread of the electrical phenomenon. Restricting ion channel tuning to a network subregion then revealed how electrical spread could be locally shaped in accordance with the aggregate changes in membrane resistance. In summary, our analysis frames and reimagines electrical conduction as a pliable process, with subtle regulatory changes to membrane proteins shaping network spread and tissue perfusion.NEW & NOTEWORTHY Conducted vasomotor responses depend on initiation and spread of electrical phenomena along arterial walls and their translation into contractile responses. Using computational approaches, we show how subtle but widespread regulation of gap junctions and ion channels can modulate the range and amplitude of electrical spread. Ion channels are regulated by endocrine and mechanical signals and may differ regionally in networks. Subregional electrical changes are not spatially confined but may affect electrical conduction in neighboring regions.


Asunto(s)
Arterias Cerebrales/metabolismo , Simulación por Computador , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Modelos Cardiovasculares , Músculo Esquelético/inervación , Animales , Conductividad Eléctrica , Endotelio Vascular/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Transducción de Señal
7.
Artículo en Inglés | MEDLINE | ID: mdl-32946262

RESUMEN

Coordinating blood flow to active tissue requires vasomotor responses to conduct among resistance arteries. Vasomotor spread is governed by the electrical and mechanical properties of vessels; the latter being linked to the sigmoid relations between membrane potential (VM), [Ca2+], and smooth muscle contractility. Proteins guiding electrical-to-tone translation are subject to regulation; thus, vasomotor conduction could be viewed as "pliant" to the current regulatory state. Using simple in silico approaches, we explored vasomotor pliancy and how the regulation of contractility impacts conduction along a skeletal muscle artery and a branching cerebrovascular network. Initial simulations revealed how limited electromechanical linearity affects the translation of electrical spread into arterial tone. Subtle changes to the VM-[Ca2+] or [Ca2+]-diameter relationship, akin to regulatory alterations in Ca2+ influx and Ca2+ sensitivity, modified the distance and amplitude of the conducted vasomotor response. Simultaneous changes to both relationships, consistent with agonist stimulation, augmented conduction although the effect varied with stimulus strength and polarity (depolarization vs hyperpolarization). Final simulations using our cerebrovascular network revealed how localized changes to the VM-[Ca2+] or [Ca2+]-diameter relationships could regionally shape conduction without interfering with the electrical spread. We conclude that regulatory changes to key effector proteins (e.g. L-type Ca2+ channels, myosin light chain phosphatase), integral to voltage translation, not only impact conducted vasomotor tone but likely blood flow delivery to active tissues.

8.
Am J Physiol Heart Circ Physiol ; 318(3): H632-H638, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004067

RESUMEN

Arterial membrane potential (Vm) is set by an active interplay among ion channels whose principal function is to set contractility through the gating of voltage-operated Ca2+ channels. To garner an understanding of this electrical parameter, the activity of each channel must be established under near-physiological conditions, a significant challenge given their small magnitude. The inward rectifying K+ (KIR) channel is illustrative of the problem, as its outward "physiological" component is almost undetectable. This study describes a stepwise approach to dissect small ionic currents at physiological Vm using endothelial and smooth muscle cells freshly isolated from rat cerebral arteries. We highlight three critical steps, beginning with the voltage clamping of vascular cells bathed in physiological solutions while maintaining a giga-ohm seal. KIR channels are then inhibited (micromolar Ba2+) so that a difference current can be created, once Ba2+ traces are corrected for the changing seal resistance and subtle instrument drift, pulling the reversal potential rightward. The latter is a new procedure and entails the alignment of whole cell current traces at a voltage where KIR is silent and other channels exhibit limited activity. We subsequently introduced corrected and uncorrected currents into computer models of the arterial wall to show how these subtle adjustments markedly impact the importance of KIR in Vm and arterial tone regulation. We argue that this refined approach can be used on an array of vascular ion channels to build a complete picture of how they dynamically interact to set arterial tone in key organs like the brain.NEW & NOTEWORTHY This work describes a stepwise approach to resolve small ionic currents involved in controlling Vm in resistance arteries. Using this new methodology, we particularly resolved the outward component of the KIR current in native vascular cells, voltage clamped in near-physiological conditions. This novel approach can be applied to any other vascular currents and used to better interpret how vascular ion channels cooperate to control arterial tone.


Asunto(s)
Arterias Cerebrales/fisiología , Potenciales de la Membrana/fisiología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Animales , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/fisiología , Ratas , Ratas Sprague-Dawley
9.
Arterioscler Thromb Vasc Biol ; 39(6): 1072-1087, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31043073

RESUMEN

Objective- Inward rectifying K+ (KIR) channels are present in cerebral arterial smooth muscle and endothelial cells, a tandem arrangement suggestive of a dynamic yet undiscovered role for this channel. This study defined whether distinct pools of cerebral arterial KIR channels were uniquely modulated by membrane lipids and hemodynamic stimuli. Approach and Results- A Ba2+-sensitive KIR current was isolated in smooth muscle and endothelial cells of rat cerebral arteries; molecular analyses subsequently confirmed KIR2.1/KIR2.2 mRNA and protein expression in both cells. Patch-clamp electrophysiology next demonstrated that each population of KIR channels was sensitive to key membrane lipids and hemodynamic stimuli. In this regard, endothelial KIR was sensitive to phosphatidylinositol 4,5-bisphosphate content, with depletion impairing the ability of laminar shear stress to activate this channel pool. In contrast, smooth muscle KIR was sensitive to membrane cholesterol content, with sequestration blocking the ability of pressure to inhibit channel activity. The idea that membrane lipids help confer shear stress and pressure sensitivity of KIR channels was confirmed in intact arteries using myography. Virtual models integrating structural/electrical observations reconceptualized KIR as a dynamic regulator of membrane potential working in concert with other currents to set basal tone across a range of shear stresses and intravascular pressures. Conclusions- The data show for the first time that specific membrane lipid-KIR interactions enable unique channel populations to sense hemodynamic stimuli and drive vasomotor responses to set basal perfusion in the cerebral circulation.


Asunto(s)
Arterias Cerebrales/metabolismo , Circulación Cerebrovascular/fisiología , Células Endoteliales/metabolismo , Lípidos de la Membrana/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/genética , Animales , Comunicación Celular/fisiología , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Hemodinámica/fisiología , Potenciales de la Membrana , Modelos Animales , Ratas , Ratas Sprague-Dawley , Valores de Referencia
10.
Curr Top Membr ; 85: 227-259, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32402641

RESUMEN

Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.


Asunto(s)
Hemodinámica , Metabolismo de los Lípidos , Microvasos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Enfermedad , Humanos , Microvasos/fisiología , Canales de Potasio de Rectificación Interna/química
11.
Am J Physiol Heart Circ Physiol ; 316(4): H794-H800, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30681365

RESUMEN

In the rodent cerebral circulation, inward rectifying K+ (KIR) channels set resting tone and the distance over which electrical phenomena spread along the arterial wall. The present study sought to translate these observations into human cerebral arteries obtained from resected brain tissue. Computational modeling and a conduction assay first defined the impact of KIR channels on electrical communication; patch-clamp electrophysiology, quantitative PCR, and immunohistochemistry then characterized KIR2.x channel expression/activity. In keeping with rodent observations, computer modeling highlighted that KIR blockade should constrict cerebral arteries and attenuate electrical communication if functionally expressed. Surprisingly, Ba2+ (a KIR channel inhibitor) had no effect on human cerebral arterial tone or intercellular conduction. In alignment with these observations, immunohistochemistry and patch-clamp electrophysiology revealed minimal KIR channel expression/activity in both smooth muscle and endothelial cells. This absence may be reflective of chronic stress as dysphormic neurons, leukocyte infiltrate, and glial fibrillary acidic protein expression was notable in the epileptic cortex. In closing, KIR2.x channel expression is limited in human cerebral arteries from patients with epilepsy and thus has little impact on resting tone or the spread of vasomotor responses. NEW & NOTEWORTHY KIR2.x channels are expressed in rodent cerebral arterial smooth muscle and endothelial cells. As they are critical to setting membrane potential and the distance signals conduct, we sought to translate this work into humans. Surprisingly, KIR2.x channel activity/expression was limited in human cerebral arteries, a paucity tied to chronic brain stress in the epileptic cortex. Without substantive expression, KIR2.x channels were unable to govern arterial tone or conduction.


Asunto(s)
Arterias Cerebrales/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Adulto , Bario/farmacología , Comunicación Celular , Arterias Cerebrales/efectos de los fármacos , Simulación por Computador , Fenómenos Electrofisiológicos/fisiología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Epilepsia/fisiopatología , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Tono Muscular/efectos de los fármacos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Adulto Joven
12.
Arterioscler Thromb Vasc Biol ; 38(10): 2371-2381, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30354206

RESUMEN

Objective- This study examined whether caveolae position CaV3.2 (T-type Ca2+ channel encoded by the α-3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large-conductance Ca2+-activated K+ channel feedback. Approach and Results- Using smooth muscle cells from mouse mesenteric arteries, the proximity ligation assay confirmed that CaV3.2 reside within 40 nm of caveolin 1, a key caveolae protein. Methyl-ß-cyclodextrin, a cholesterol depleting agent that disrupts caveolae, suppressed CaV3.2 activity along with large-conductance Ca2+-activated K+-mediated spontaneous transient outward currents in cells from C57BL/6 but not CaV3.2-/- mice. Genetic deletion of caveolin 1, a perturbation that prevents caveolae formation, also impaired spontaneous transient outward current production but did so without impairing Ca2+ channel activity, including CaV3.2. These observations indicate a mistargeting of CaV3.2 in caveolin 1-/- mice, a view supported by a loss of Ni2+-sensitive Ca2+ spark generation and colocalization signal (CaV3.2-RyR) from the proximity ligation assay. Vasomotor and membrane potential measurements confirmed that cellular disruption of the CaV3.2-RyR axis functionally impaired the ability of large-conductance Ca2+-activated K+ to set tone in pressurized caveolin 1-/- arteries. Conclusions- Caveolae play a critical role in protein targeting and preserving the close structural relationship between CaV3.2 and RyR needed to drive negative feedback control in resistance arteries.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Caveolas/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Canales de Calcio Tipo T/deficiencia , Canales de Calcio Tipo T/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Retroalimentación Fisiológica , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Vasoconstricción , Vasodilatación
13.
14.
J Physiol ; 596(20): 4863-4877, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146760

RESUMEN

KEY POINTS: In arterial smooth muscle, Ca2+ sparks are elementary Ca2+ -release events generated by ryanodine receptors (RyRs) to cause vasodilatation by opening maxi Ca2+ -sensitive K+ (BKCa ) channels. This study elucidated the contribution of T-type Cav 3.2 channels in caveolae and their functional interaction with L-type Cav 1.2 channels to trigger Ca2+ sparks in vascular smooth muscle cells (VSMCs). Our data demonstrate that L-type Cav 1.2 channels provide the predominant Ca2+ pathway for the generation of Ca2+ sparks in murine arterial VSMCs. T-type Cav 3.2 channels represent an additional source for generation of VSMC Ca2+ sparks. They are located in pit structures of caveolae to provide locally restricted, tight coupling between T-type Cav 3.2 channels and RyRs to ignite Ca2+ sparks. ABSTRACT: Recent data suggest that T-type Cav 3.2 channels in arterial vascular smooth muscle cells (VSMCs) and pits structure of caveolae could contribute to elementary Ca2+ signalling (Ca2+ sparks) via ryanodine receptors (RyRs) to cause vasodilatation. While plausible, their precise involvement in igniting Ca2+ sparks remains largely unexplored. The goal of this study was to elucidate the contribution of caveolar Cav 3.2 channels and their functional interaction with Cav 1.2 channels to trigger Ca2+ sparks in VSMCs from mesenteric, tibial and cerebral arteries. We used tamoxifen-inducible smooth muscle-specific Cav 1.2-/- (SMAKO) mice and laser scanning confocal microscopy to assess Ca2+ spark generation in VSMCs. Ni2+ , Cd2+ and methyl-ß-cyclodextrin were used to inhibit Cav 3.2 channels, Cav 1.2 channels and caveolae, respectively. Ni2+ (50 µmol L-1 ) and methyl-ß-cyclodextrin (10 mmol L-1 ) decreased Ca2+ spark frequency by ∼20-30% in mesenteric VSMCs in a non-additive manner, but failed to inhibit Ca2+ sparks in tibial and cerebral artery VSMCs. Cd2+ (200 µmol L-1 ) suppressed Ca2+ sparks in mesenteric arteries by ∼70-80%. A similar suppression of Ca2+ sparks was seen in mesenteric artery VSMCs of SMAKO mice. The remaining Ca2+ sparks were fully abolished by Ni2+ or methyl-ß-cyclodextrin. Our data demonstrate that Ca2+ influx through CaV 1.2 channels is the primary means of triggering Ca2+ sparks in murine arterial VSMCs. CaV 3.2 channels, localized to caveolae and tightly coupled to RyR, provide an additional Ca2+ source for Ca2+ spark generation in mesenteric, but not tibial and cerebral, arteries.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Arterias Mesentéricas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Caveolas/metabolismo , Células Cultivadas , Masculino , Arterias Mesentéricas/citología , Ratones , Miocitos del Músculo Liso/metabolismo
15.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29211322

RESUMEN

Resistant hypertension is defined as high blood pressure that remains uncontrolled despite treatment with at least three antihypertensive drugs at adequate doses. Resistant hypertension is an increasingly common clinical problem in older age, obesity, diabetes, sleep apnea, and chronic kidney disease. Although the direct vasodilator minoxidil was introduced in the early 1970s, only recently has this drug been shown to be particularly effective in a subgroup of patients with treatment-resistant or uncontrolled hypertension. This pharmacological approach is interesting from a mechanistic perspective as minoxidil is the only clinically used K+ channel opener today, which targets a subclass of K+ channels, namely KATP channels in VSMCs. Beside KATP channels, two other classes of VSMC K+ channels could represent novel effective targets for treatment of resistant hypertension, namely Kv 7 (KCNQ) and inward rectifier potassium (Kir 2.1) channels. Interestingly, these channels are unique among VSMC potassium channels. First, both have been implicated in the control of microvascular tone by perivascular adipose tissue. Second, they exhibit biophysical properties strongly controlled and regulated by membrane voltage, but not intracellular calcium. This review focuses on Kv 7 (Kv 7.1-5) and Kir (Kir 2.1) channels in VSMCs as potential novel drug targets for treatment of resistant hypertension, particularly in comorbid conditions such as obesity and metabolic syndrome.


Asunto(s)
Tejido Adiposo/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Humanos , Hipertensión/tratamiento farmacológico , Músculo Liso Vascular/citología
16.
J Physiol ; 595(4): 1111-1126, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27805790

RESUMEN

KEY POINTS: Distinct Ca2+ channels work in a coordinated manner to grade Ca2+ spark/spontaneous transient outward currents (STOCs) in rat cerebral arteries. The relative contribution of each Ca2+ channel to Ca2+ spark/STOC production depends upon their biophysical properties and the resting membrane potential of smooth muscle. Na+ /Ca2+ exchanger, but not TRP channels, can also facilitate STOC production. ABSTRACT: Ca2+ sparks are generated in a voltage-dependent manner to initiate spontaneous transient outward currents (STOCs), events that moderate arterial constriction. In this study, we defined the mechanisms by which membrane depolarization increases Ca2+ sparks and subsequent STOC production. Using perforated patch clamp electrophysiology and rat cerebral arterial myocytes, we monitored STOCs in the presence and absence of agents that modulate Ca2+ entry. Beginning with CaV 3.2 channel inhibition, Ni2+ was shown to decrease STOC frequency in cells held at hyperpolarized (-40 mV) but not depolarized (-20 mV) voltages. In contrast, nifedipine, a CaV 1.2 inhibitor, markedly suppressed STOC frequency at -20 mV but not -40 mV. These findings aligned with the voltage-dependent profiles of L- and T-type Ca2+ channels. Furthermore, computational and experimental observations illustrated that Ca2+ spark production is intimately tied to the activity of both conductances. Intriguingly, this study observed residual STOC production at depolarized voltages that was independent of CaV 1.2 and CaV 3.2. This residual component was insensitive to TRPV4 channel modulation and was abolished by Na+ /Ca2+ exchanger blockade. In summary, our work highlights that the voltage-dependent triggering of Ca2+ sparks/STOCs is not tied to a single conductance but rather reflects an interplay among multiple Ca2+ permeable pores with distinct electrophysiological properties. This integrated orchestration enables smooth muscle to grade Ca2+ spark/STOC production and thus precisely tune negative electrical feedback.


Asunto(s)
Señalización del Calcio , Arterias Cerebrales/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Canales de Calcio/metabolismo , Células Cultivadas , Arterias Cerebrales/citología , Arterias Cerebrales/fisiología , Femenino , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Ratas , Ratas Sprague-Dawley , Intercambiador de Sodio-Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo
17.
Microcirculation ; 24(3)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28303623

RESUMEN

The endothelium is an integrated layer of cells whose dynamic regulation governs arterial tone development and the matching of blood flow delivery to tissue energetic demand. Investigating the structural and electrical properties of native endothelial cells has been a challenging prospect, with efforts often restricted to traditional myographic techniques. Concerted experimental attention, along with recent technical advances, has broadened the investigative tool kit, deepening mechanistic insights. This overview in part of a STI centered on the endothelium and how key structural/electrical properties guide arterial tone development and integrated network behavior. Articles are written in a provocative, opinionated manner to provoke deeper thought and to highlight areas of investigative deficiency.


Asunto(s)
Arterias/fisiología , Endotelio Vascular/fisiología , Hemodinámica , Transducción de Señal/fisiología , Animales , Humanos
18.
Microcirculation ; 24(3)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27809400

RESUMEN

OBJECTIVE: Endothelial and smooth muscle cells must communicate with one another to regulate arterial diameter. A key structure driving heterocellular communication is the endothelial projection, a thin extension that crosses the internal elastic lamina (IEL) making contact with smooth muscle. This study sought to define the precise structural composition of endothelial projections in the mesenteric circulation. METHODS: Third- and fourth-order mesenteric arteries from hamster were prepared for electron microscopy. Electron tomographic approaches were used to generate 3-D compositional models of endothelial projections. RESULTS: Endothelial projections were categorized based upon their proximity to smooth muscle or how many projections projected through an IEL hole. Irrespective of the initial categorization, endothelial projections were largely devoid of organelles except for sparse membranous structures observed near the tip, close to potential smooth muscle contact sites. Unexpectedly, it was the base of projections which were rich with organelles including the endoplasmic reticulum, ribosomes, vesicles, caveolae, and mitochondria. CONCLUSIONS: Electron tomographic techniques suggest that the base of endothelial projections is likely a dynamic site for signal regulation and contractile control. As projections are largely devoid of membranous organelles, their principal function appears to ensure electrical contact between the two cell layers.


Asunto(s)
Comunicación Celular/fisiología , Tomografía con Microscopio Electrónico/métodos , Células Endoteliales/citología , Arterias Mesentéricas/ultraestructura , Miocitos del Músculo Liso/citología , Animales , Cricetinae , Células Endoteliales/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/ultraestructura , Imagenología Tridimensional , Arterias Mesentéricas/fisiología , Orgánulos/ultraestructura
19.
Microcirculation ; 24(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28036148

RESUMEN

PURPOSE: Although studies suggest elevated adrenergic activity paralleling metabolic syndrome in OZRs, the moderate hypertension and modest impact on organ perfusion question the multi-scale validity of these data. METHODS: To understand how adrenergic function contributes to vascular reactivity in OZR, we utilized a multi-scale approach to investigate pressure responses, skeletal muscle blood flow, and vascular reactivity following adrenergic challenge. RESULTS: For OZR, adrenergic challenge resulted in increased pressor responses vs LZRs, mediated via α1 receptors, with minimal contribution by either ROS or NO bioavailability. In situ gastrocnemius muscle of OZR exhibited blunted functional hyperemia, partially restored with α1 inhibition, although improved muscle performance and VO2 required combined treatment with TEMPOL. Within OZR in situ cremaster muscle, proximal arterioles exhibited a more heterogeneous constriction to adrenergic challenge, biased toward hyperresponsiveness, vs LZR. This increasingly heterogeneous pattern was mirrored in ex vivo arterioles, mediated via α1 receptors, with roles for ROS and NO bioavailability evident in hyperresponsive vessels only. CONCLUSIONS: These results support the central role of the α1 adrenoreceptor for augmented pressor responses and elevations in vascular resistance, but identify an increased heterogeneity of constrictor reactivity in OZR that is presently of unclear purpose.


Asunto(s)
Adrenérgicos/farmacología , Síndrome Metabólico/fisiopatología , Músculo Esquelético/irrigación sanguínea , Vasoconstricción/efectos de los fármacos , Animales , Hemodinámica/fisiología , Perfusión , Presorreceptores/metabolismo , Presorreceptores/fisiología , Ratas , Ratas Zucker , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/fisiología , Flujo Sanguíneo Regional/fisiología
20.
Circ Res ; 115(7): 650-61, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25085940

RESUMEN

RATIONALE: T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. OBJECTIVE: This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca(2+) sparks, discrete events that initiate arterial hyperpolarization by activating large-conductance Ca(2+)-activated K(+) channels. METHODS AND RESULTS: Micromolar Ni(2+), an agent that selectively blocks CaV3.2 but not CaV1.2/CaV3.1, was first shown to depolarize/constrict pressurized rat cerebral arteries; no effect was observed in CaV3.2(-/-) arteries. Structural analysis using 3-dimensional tomography, immunolabeling, and a proximity ligation assay next revealed the existence of microdomains in cerebral arterial smooth muscle which comprised sarcoplasmic reticulum and caveolae. Within these discrete structures, CaV3.2 and ryanodine receptor resided in close apposition to one another. Computational modeling revealed that Ca(2+) influx through CaV3.2 could repetitively activate ryanodine receptor, inducing discrete Ca(2+)-induced Ca(2+) release events in a voltage-dependent manner. In keeping with theoretical observations, rapid Ca(2+) imaging and perforated patch clamp electrophysiology demonstrated that Ni(2+) suppressed Ca(2+) sparks and consequently spontaneous transient outward K(+) currents, large-conductance Ca(2+)-activated K(+) channel mediated events. Additional functional work on pressurized arteries noted that paxilline, a large-conductance Ca(2+)-activated K(+) channel inhibitor, elicited arterial constriction equivalent, and not additive, to Ni(2+). Key experiments on human cerebral arteries indicate that CaV3.2 is present and drives a comparable response to moderate constriction. CONCLUSIONS: These findings indicate for the first time that CaV3.2 channels localize to discrete microdomains and drive ryanodine receptor-mediated Ca(2+) sparks, enabling large-conductance Ca(2+)-activated K(+) channel activation, hyperpolarization, and attenuation of cerebral arterial constriction.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Arterias Cerebrales/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Arterias Cerebrales/citología , Retroalimentación Fisiológica , Femenino , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciales de la Membrana , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA