Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 238(Pt 2): 117185, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742753

RESUMEN

A comparative degradation of antibiotic cefaclor (CEC) between Ti/Ti4O7 and Ti/RuO2 anodes, in terms of degradation kinetics, mineralization efficiency, and formation of toxic chlorate (ClO3-) and perchlorate (ClO4-), was performed with electrochemical-oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) processes. Besides, CEC degradation by EF with boron-doped diamond (BDD) anode was also tested. Results showed CEC decays always followed pseudo-first-order kinetics, with increasing apparent rate constants in the sequence of EO < EF < PEF. The mineralization efficiency of the processes with Ti/Ti4O7 anode was higher than that of Ti/RuO2 anode, but slightly lower than that of BDD anode. Under the optimal conditions, 94.8% mineralization was obtained in Ti/Ti4O7-PEF, which was much higher than 64.4% in Ti/RuO2-PEF. The use of Ti/RuO2 gave no generation of ClO3- or ClO4-, while the use of Ti/Ti4O7 yielded a small amount of ClO3- and trace amounts of ClO4-. Conversely, the use of BDD led to the highest generation of ClO3- and ClO4-. The reaction mechanism was studied systematically by detecting the generated H2O2 and •OH. The initial N of CEC was released as NH4+ and, in smaller proportion, as NO3-. Four short-chain carboxylic acids and nine aromatic intermediates were also detected, a possible reaction sequence for CEC mineralization was finally proposed.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Cefaclor , Peróxido de Hidrógeno , Cloratos , Titanio , Percloratos , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 270: 129486, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33418225

RESUMEN

Oxidation of a commonly-used ß-lactam pharmaceutical, cefoperazone (CFPZ), was systematically investigated by anodic oxidation (AO), AO in presence of H2O2 electro-generation (AO-H2O2) and electro-Fenton (EF) processes with an activated carbon fiber cathode from the biodegradability viewpoint. The degradation and mineralization rates increased in a sequence of AO < AO-H2O2 < EF. Even CPFZ could be efficiently degraded in EF process, achieving complete CFPZ mineralization was rather difficult. Thereby, the biodegradability of the effluent after electrochemical pretreatment was examined to test the feasibility of the combination of electrochemical and biological processes. The results suggested that compared with AO and AO-H2O2, EF process could effectively transform the non-biodegradable CFPZ into biocompatible materials with a high BOD5/COD value (0.33 after 720 min), allowing the possible biotreatment for further remediation. This behavior was relatively accorded with the average oxidation state (AOS) results, evidencing the potential of EF process in enhancing the biodegradability of CFPZ. The determination of inorganic ions revealed that N in CFPZ molecular was oxidized into NH4+ and NO3- ions in EF process. Oxalic, succinic, oxamic, fumaric and formic acids were also formed. Besides, six aromatic by-products were qualified and a possible pathway involving hydrolysis, hydroxylation and decarboxylation during CFPZ mineralization was proposed.


Asunto(s)
Fenómenos Biológicos , Contaminantes Químicos del Agua , Antibacterianos , Cefoperazona , Electrodos , Peróxido de Hidrógeno , Oxidación-Reducción
3.
J Hazard Mater ; 374: 186-194, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30999142

RESUMEN

The mineralization of 125 mL of 50-300 mg L-1 cefoperazone (CFPZ) has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) like anodic oxidation (AO), electro-Fenton (EF) and photoelectro-Fenton (PEF) with a RuO2/Ti or boron-doped diamond (BDD) anode and an activated carbon fiber (ACF) cathode. A microwave discharge electrodeless lamp (MDEL) was used as the UV source in PEF process. CFPZ decays always followed pseudo-first-order kinetics and their constant rates increased in the order: AO < EF < MDEL-PEF, regardless of anode types. Higher mineralization was achieved in all methods using BDD instead of RuO2/Ti, while the most potent BDD-MDEL-PEF gave 88% mineralization under its optimum conditions of 0.36 A, pH 3.0 and 1.0 mmol L-1 Fe2+. The synergistic mechanisms were explored by quantifying the electrogenerated H2O2 and formed •OH, in which 2.27 and 2.58 mmol L-1 H2O2 were accumulated in AO-H2O2 with RuO2/Ti or BDD anode, respectively, while 92.0 and 263.5 µmol L-1 •OH were generated in EF with RuO2/Ti or BDD anode, respectively. The oxidation power of EAOPs with different anodes was also compared by measuring the evolutions of NO3- and NH4+ as well as four generated carboxylic acids including oxalic, oxamic, formic and fumaric acids.


Asunto(s)
Cefoperazona/farmacología , Compuestos de Rutenio/química , Titanio/química , Purificación del Agua/métodos , Boro/química , Ácidos Carboxílicos/química , Diamante/química , Técnicas Electroquímicas , Electrodos , Peróxido de Hidrógeno/química , Iones , Hierro , Cinética , Microondas , Nitrógeno/química , Oxidación-Reducción , Fotólisis , Contaminantes Químicos del Agua/química
4.
Chemosphere ; 221: 423-432, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30648647

RESUMEN

Solutions of 200 mg L-1 cefalexin (CLX), an antibiotic with high usage frequency and biodegradation resistance, have been comparatively degraded by electro-Fenton (EF) and photoelectro-Fenton (PEF) processes using two kinds of activated carbon fiber (ACF) cathodes with different physical properties. These two ACFs shared similar pore volumes and pore diameters but varied BET surface areas, which were confirmed to be 0.5210 cm3 g-1, 2.26 nm and 921 m2 g-1 for ACF1, while 0.6508 cm3 g-1, 2.16 nm and 1206 m2 g-1 for ACF2, respectively. Their oxidation abilities were comparatively assessed in terms of degradation kinetics and mineralization rates, which increased in the order: ACF1-EF < ACF2-EF < ACF1-PEF < ACF2-PEF. These results confirmed the superiority of ACF with higher surface area, which was correlated to faster H2O2 and OH accumulation in more reaction sites provided. After 120 min electrolysis, ACF1 exhibited 1510 µM H2O2 and 37 µM OH accumulation, while ACF2 generated 1934 µM H2O2 and 85 µM OH. Moreover, ACF cathode with more developed pore structure also revealed faster formation of degradation by-products like inorganic ions (NH4+ and NO3- ions) and short-chain carboxylic acids (acetic, formic, oxamic and oxalic acids), as well as enhanced removal for partial acids. In order to gain a deeper understanding of degradation mechanisms for ACF2-PEF system, evolutions of six aromatic by-products generated from sulfoxidation, hydroxylation and decarboxylation were confirmed by UPLC-QTOF-MS/MS determination. Based on the above identifications of the degradation intermediates, a plausible reaction pathway for CLX removal was proposed.


Asunto(s)
Fibra de Carbono , Cefalexina/química , Peróxido de Hidrógeno/química , Antibacterianos/química , Ácidos Carboxílicos , Descarboxilación , Electrodos , Electrólisis , Hidroxilación , Cinética , Oxidación-Reducción , Propiedades de Superficie , Contaminantes Químicos del Agua/química
5.
J Hazard Mater ; 318: 319-328, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27434735

RESUMEN

In this study, a novel self-sustainable solar assisted photoelectro-Fenton (SPEF) system driven by a solar photovoltaic cell was developed for the efficient mineralization of antibiotic trimethoprim (TMP) in water. A comparative degradation of 200mgL(-1) TMP by RuO2/Ti anodic oxidation (AO), anodic oxidation with H2O2 electrogeneration (AO-H2O2), electro-Fenton (EF) and SPEF was investigated. SPEF was proved to exhibit the highest oxidation power, i.e., more than 80% TOC was removed after 360min SPEF treatment of 200mgL(-1) of TMP under optimal conditions at pH 3.0, 1.0mM Fe(2+) and 18mAcm(-2). Influences of current density, pH, initial Fe(2+) and initial TMP concentration on SPEF process were also studied. Ten aromatic intermediates generated from hydroxylation, carbonylation and demethylation reactions were identified using UPLC-QTOF-MS/MS system during the SPEF treatment, together with three carboxylic acids (oxamic, oxalic and formic acids) and two inorganic ions (NH4(+) and NO3(-)) measured. Therefore, a reasonable pathway of TMP degradation in SPEF process was proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA