Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(5): 1238-1254, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27118425

RESUMEN

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Asunto(s)
Encéfalo/citología , Técnicas de Cultivo de Célula , Modelos Biológicos , Organoides , Virus Zika/fisiología , Reactores Biológicos , Técnicas de Cultivo de Célula/economía , Embrión de Mamíferos , Desarrollo Embrionario , Humanos , Células Madre Pluripotentes Inducidas , Neurogénesis , Neuronas/citología , Organoides/virología , Infección por el Virus Zika/fisiopatología , Infección por el Virus Zika/virología
2.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37949069

RESUMEN

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Fosforilación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32592681

RESUMEN

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Neurogénesis/genética , Regiones Promotoras Genéticas , Adulto , Línea Celular , Cerebro/citología , Cerebro/crecimiento & desarrollo , Cerebro/metabolismo , Cromatina/ultraestructura , Mapeo Cromosómico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cell ; 148(5): 1051-64, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385968

RESUMEN

How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Esquizofrenia/metabolismo , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Animales , Dendritas/metabolismo , Susceptibilidad a Enfermedades , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Esquizofrenia/genética , Análisis de la Célula Individual , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12
5.
Genes Dev ; 31(9): 849-861, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28566536

RESUMEN

The re-emergence of Zika virus (ZIKV), a mosquito-borne and sexually transmitted flavivirus circulating in >70 countries and territories, poses a significant global threat to public health due to its ability to cause severe developmental defects in the human brain, such as microcephaly. Since the World Health Organization declared the ZIKV outbreak a Public Health Emergency of International Concern, remarkable progress has been made to gain insight into cellular targets, pathogenesis, and underlying biological mechanisms of ZIKV infection. Here we review the current knowledge and progress in understanding the impact of ZIKV exposure on the mammalian brain development and discuss potential underlying mechanisms.


Asunto(s)
Microcefalia/virología , Infección por el Virus Zika/complicaciones , Virus Zika/fisiología , Animales , Brotes de Enfermedades , Humanos , Microcefalia/patología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
6.
Brain Behav Immun ; 112: 175-187, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301236

RESUMEN

Long noncoding RNAs (lncRNAs) play multifaceted roles in regulating brain gene networks. LncRNA abnormalities are thought to underlie the complex etiology of numerous neuropsychiatric disorders. One example is the human lncRNA gene GOMAFU, which is found dysregulated in schizophrenia (SCZ) postmortem brains and harbors genetic variants that contribute to the risk of SCZ. However, transcriptome-wide biological pathways regulated by GOMAFU have not been determined. How GOMAFU dysregulation contributes to SCZ pathogenesis remains elusive. Here we report that GOMAFU is a novel suppressor of human neuronal interferon (IFN) response pathways that are hyperactive in the postmortem SCZ brains. We analyzed recently released transcriptomic profiling datasets in clinically relevant brain areas derived from multiple SCZ cohorts and found brain region-specific dysregulation of GOMAFU. Using CRISPR-Cas9 to delete the GOMAFU promoter in a human neural progenitor cell model, we identified transcriptomic alterations caused by GOMAFU deficiency in pathways commonly affected in postmortem brains of SCZ and autism spectrum disorder (ASD), with the most striking effects on upregulation of numerous genes underlying IFN signaling. In addition, expression levels of GOMAFU target genes in the IFN pathway are differentially affected in SCZ brain regions and negatively associated with GOMAFU alterations. Furthermore, acute exposure to IFN-γ causes a rapid decline of GOMAFU and activation of a subclass of GOMAFU targets in stress and immune response pathways that are affected in SCZ brains, which form a highly interactive molecular network. Together, our studies unveiled the first evidence of lncRNA-governed neuronal response pathways to IFN challenge and suggest that GOMAFU dysregulation may mediate environmental risks and contribute to etiological neuroinflammatory responses by brain neurons of neuropsychiatric diseases.


Asunto(s)
Trastorno del Espectro Autista , ARN Largo no Codificante , Humanos , Trastorno del Espectro Autista/metabolismo , Perfilación de la Expresión Génica , Interferones , Neuronas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
7.
Mol Psychiatry ; 27(5): 2393-2404, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35264726

RESUMEN

A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Esquizofrenia , Antipsicóticos/metabolismo , Antipsicóticos/uso terapéutico , Encéfalo/metabolismo , Metabolismo Energético , Humanos , Trastornos Psicóticos/metabolismo , Esquizofrenia/metabolismo
8.
J Neurosci ; 41(31): 6596-6616, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34261699

RESUMEN

Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.


Asunto(s)
Discapacidades del Desarrollo , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Transportadores de Anión Orgánico/genética , Proteostasis/genética , Ribonucleoproteínas/genética , Proteínas Ribosómicas/genética , Animales , Línea Celular , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/fisiopatología , Drosophila , Regulación de la Expresión Génica/genética , Humanos , Neurogénesis/fisiología , Biosíntesis de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Ribosomas/fisiología
9.
Hum Mol Genet ; 29(15): 2579-2595, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32794569

RESUMEN

GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.


Asunto(s)
Epigenoma/genética , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Transcriptoma/genética , Diferenciación Celular/genética , Cromatina , Biología Computacional , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Interneuronas/citología , Factores de Transcripción/genética
10.
Mol Psychiatry ; 26(4): 1346-1360, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31444471

RESUMEN

Psychiatric disorders are a collection of heterogeneous mental disorders arising from a contribution of genetic and environmental insults, many of which molecularly converge on transcriptional dysregulation, resulting in altered synaptic functions. The underlying mechanisms linking the genetic lesion and functional phenotypes remain largely unknown. Patient iPSC-derived neurons with a rare frameshift DISC1 (Disrupted-in-schizophrenia 1) mutation have previously been shown to exhibit aberrant gene expression and deficits in synaptic functions. How DISC1 regulates gene expression is largely unknown. Here we show that Activating Transcription Factor 4 (ATF4), a DISC1 binding partner, is more abundant in the nucleus of DISC1 mutant human neurons and exhibits enhanced binding to a collection of dysregulated genes. Functionally, overexpressing ATF4 in control neurons recapitulates deficits seen in DISC1 mutant neurons, whereas transcriptional and synaptic deficits are rescued in DISC1 mutant neurons with CRISPR-mediated heterozygous ATF4 knockout. By solving the high-resolution atomic structure of the DISC1-ATF4 complex, we show that mechanistically, the mutation of DISC1 disrupts normal DISC1-ATF4 interaction, and results in excessive ATF4 binding to DNA targets and deregulated gene expression. Together, our study identifies the molecular and structural basis of an DISC1-ATF4 interaction underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Trastornos Mentales , Factor de Transcripción Activador 4/genética , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas
11.
Mol Psychiatry ; 26(7): 3122-3133, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32753686

RESUMEN

We previously reported that SNPs near TSPAN5 were associated with plasma serotonin (5-HT) concentrations which were themselves associated with selective serotonin reuptake inhibitor treatment outcomes in patients with major depressive disorder (MDD). TSPAN5 SNPs were also associated with alcohol consumption and alcohol use disorder (AUD) risk. The present study was designed to explore the biological function of TSPAN5 with a focus on 5-HT and kynurenine concentrations in the tryptophan pathway. Ethanol treatment resulted in decreased 5-HT concentrations in human induced pluripotent stem cell (iPSC)-derived neuron culture media, and the downregulation of gene expression of TSPAN5, DDC, MAOA, MAOB, TPH1, and TPH2 in those cells. Strikingly, similar observations were made when the cells were treated with acamprosate-an FDA approved drug for AUD therapy. These results were replicated in iPSC-derived astrocytes. Furthermore, TSPAN5 interacted physically with proteins related to clathrin and other vesicle-related proteins, raising the possibility that TSPAN5 might play a role in vesicular function in addition to regulating expression of genes associated with 5-HT biosynthesis and metabolism. Downregulation of TSPAN5 expression by ethanol or acamprosate treatment was also associated with decreased concentrations of kynurenine, a major metabolite of tryptophan that plays a role in neuroinflammation. Knockdown of TSPAN5 also influenced the expression of genes associated with interferon signaling pathways. Finally, we determined that TSPAN5 SNPs were associated with acamprosate treatment outcomes in AUD patients. In conclusion, TSPAN5 can modulate the concentrations of 5-HT and kynurenine. Our data also highlight a potentially novel pharmacogenomic mechanism related to response to acamprosate.


Asunto(s)
Acamprosato/farmacología , Alcoholismo , Trastorno Depresivo Mayor , Quinurenina , Serotonina , Tetraspaninas , Consumo de Bebidas Alcohólicas , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Humanos , Células Madre Pluripotentes Inducidas , Enfermedades Neuroinflamatorias , Farmacogenética , Tetraspaninas/genética , Triptófano Hidroxilasa/genética
12.
Mol Psychiatry ; 26(8): 4511-4528, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32015466

RESUMEN

Schizophrenia is a complex genetic disorder, the non-Mendelian features of which are likely complicated by epigenetic factors yet to be elucidated. Here, we performed RNA sequencing of peripheral blood RNA from monozygotic twins discordant for schizophrenia, and identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA, AC006129.1) that participates in the inflammatory response by enhancing SOCS3 and CASP1 expression in schizophrenia patients and further validated this finding in AC006129.1-overexpressing mice showing schizophrenia-related abnormal behaviors. We find that AC006129.1 binds to the promoter region of the transcriptional repressor Capicua (CIC), facilitates the interactions of DNA methyltransferases with the CIC promoter, and promotes DNA methylation-mediated CIC downregulation, thereby ameliorating CIC-induced SOCS3 and CASP1 repression. Derepression of SOCS3 enhances the anti-inflammatory response by inhibiting JAK/STAT-signaling activation. Our findings reveal an epigenetic mechanism with etiological and therapeutic implications for schizophrenia.


Asunto(s)
Metilación de ADN , ARN Largo no Codificante , Esquizofrenia , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Regulación hacia Abajo , Humanos , Inflamación , Ratones , ARN Largo no Codificante/genética , Esquizofrenia/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
13.
Neurochem Res ; 46(10): 2715-2730, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33411227

RESUMEN

Astrocytes are the primary homeostatic cells of the central nervous system, essential for normal neuronal development and function, metabolism and response to injury and inflammation. Here, we review postmortem studies examining changes in astrocytes in subjects diagnosed with the neuropsychiatric disorders schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BPD). We discuss the astrocyte-related changes described in the brain in these disorders and the potential effects of psychotropic medication on these findings. Finally, we describe emerging tools that can be used to study the role of astrocytes in neuropsychiatric illness.


Asunto(s)
Astrocitos/metabolismo , Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Esquizofrenia/metabolismo , Animales , Antidepresivos/efectos adversos , Antipsicóticos/efectos adversos , Astrocitos/efectos de los fármacos , Astrocitos/patología , Biomarcadores/metabolismo , Trastorno Bipolar/patología , Encéfalo/patología , Recuento de Células , Trastorno Depresivo Mayor/patología , Humanos , Esquizofrenia/patología
14.
J Neurosci ; 39(18): 3561-3581, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833507

RESUMEN

Neurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor. We quantified the proteomes of 22q11.2 mutant human fibroblasts from both sexes and mouse brains carrying a 22q11.2-like defect, Df(16)A+/- Molecular ontologies defined mitochondrial compartments and pathways as some of top ranked categories. In particular, we identified perturbations in the SLC25A1-SLC25A4 mitochondrial transporter interactome as associated with the 22q11.2 genetic defect. Expression of SLC25A1-SLC25A4 interactome components was affected in neuronal cells from schizophrenia patients. Furthermore, hemideficiency of the Drosophila SLC25A1 or SLC25A4 orthologues, dSLC25A1-sea and dSLC25A4-sesB, affected synapse morphology, neurotransmission, plasticity, and sleep patterns. Our findings indicate that synapses are sensitive to partial loss of function of mitochondrial solute transporters. We propose that mitoproteomes regulate synapse development and function in normal and pathological conditions in a cell-specific manner.SIGNIFICANCE STATEMENT We address the central question of how to comprehensively define molecular mechanisms of the most prevalent and penetrant microdeletion associated with neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. This complex mutation reduces gene dosage of ∼63 genes in humans. We describe a disruption of the mitoproteome in 22q11.2 patients and brains of a 22q11.2 mouse model. In particular, we identify a network of inner mitochondrial membrane transporters as a hub required for synapse function. Our findings suggest that mitochondrial composition and function modulate the risk of neurodevelopmental disorders, such as schizophrenia.


Asunto(s)
Síndrome de Deleción 22q11/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Translocador 1 del Nucleótido Adenina/metabolismo , Animales , Conducta Animal , Línea Celular , Deleción Cromosómica , Cromosomas Humanos Par 22/metabolismo , Drosophila , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriales/metabolismo , Transportadores de Anión Orgánico/metabolismo , Proteoma , Esquizofrenia/metabolismo
15.
Biochem Biophys Res Commun ; 524(4): 923-928, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32057360

RESUMEN

Amyloid ß (Aß) oligomers may be a real culprit in the pathogenesis of Alzheimer's disease (AD); therefore, the elimination of these toxic oligomers may be of great significance for AD therapy. Autophagy is the catabolic process by which lysosomes degrade cytosolic components, and heat shock cognate 70 kDa protein (Hsc70) binds to proteins with their KFERQ-like motifs [also known as chaperone-mediated autophagy (CMA) motifs] and carries them to lysosomes through CMA or late endosomes through endosomal microautophagy (eMI) for degradation. In this study, our strategy is to make the pathological Aß become one selective and suitable substrate for CMA and eMI (termed as Hsc70-based autophagy) by tagging its oligomers with multiple CMA motifs. First, we design and synthesize Aß oligomer binding peptides with three CMA motifs. Second, we determine that the peptide can help Aß oligomers enter endosomes and lysosomes, which can be further enhanced by ketone. More importantly, we find that the peptide can dramatically reduce Aß oligomers in induced pluripotent stem cell (iPSC) cortical neurons derived from AD patient fibroblasts and protect primary cultured cortical neurons against the Aß oligomer-induced neurotoxicity. In conclusion, we demonstrate that the peptide targeting Hsc70-based autophagy can effectively eliminate Aß oligomers and have superior neuroprotective activity.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Autofagia Mediada por Chaperones/efectos de los fármacos , Proteínas del Choque Térmico HSC70/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Secuencias de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Diferenciación Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas del Choque Térmico HSC70/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Terapia Molecular Dirigida , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/síntesis química , Péptidos/síntesis química , Cultivo Primario de Células , Unión Proteica , Proteolisis , Ratas , Ratas Long-Evans
16.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375586

RESUMEN

Zika virus (ZIKV) infection attenuates the growth of human neural progenitor cells (hNPCs). As these hNPCs generate the cortical neurons during early brain development, the ZIKV-mediated growth retardation potentially contributes to the neurodevelopmental defects of the congenital Zika syndrome. Here, we investigate the mechanism by which ZIKV manipulates the cell cycle in hNPCs and the functional consequence of cell cycle perturbation on the replication of ZIKV and related flaviviruses. We demonstrate that ZIKV, but not dengue virus (DENV), induces DNA double-strand breaks (DSBs), triggering the DNA damage response through the ATM/Chk2 signaling pathway while suppressing the ATR/Chk1 signaling pathway. Furthermore, ZIKV infection impedes the progression of cells through S phase, thereby preventing the completion of host DNA replication. Recapitulation of the S-phase arrest state with inhibitors led to an increase in ZIKV replication, but not of West Nile virus or DENV. Our data identify ZIKV's ability to induce DSBs and suppress host DNA replication, which results in a cellular environment favorable for its replication.IMPORTANCE Clinically, Zika virus (ZIKV) infection can lead to developmental defects in the cortex of the fetal brain. How ZIKV triggers this event in developing neural cells is not well understood at a molecular level and likely requires many contributing factors. ZIKV efficiently infects human neural progenitor cells (hNPCs) and leads to growth arrest of these cells, which are critical for brain development. Here, we demonstrate that infection with ZIKV, but not dengue virus, disrupts the cell cycle of hNPCs by halting DNA replication during S phase and inducing DNA damage. We further show that ZIKV infection activates the ATM/Chk2 checkpoint but prevents the activation of another checkpoint, the ATR/Chk1 pathway. These results unravel an intriguing mechanism by which an RNA virus interrupts host DNA replication. Finally, by mimicking virus-induced S-phase arrest, we show that ZIKV manipulates the cell cycle to benefit viral replication.


Asunto(s)
Daño del ADN , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Replicación Viral , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología , Virus Zika/fisiología , Biomarcadores , Ciclo Celular , Línea Celular , Interacciones Huésped-Patógeno/genética , Humanos , Modelos Biológicos
17.
Nature ; 515(7527): 414-8, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25132547

RESUMEN

Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Trastornos Mentales/patología , Sinapsis/patología , Animales , Diferenciación Celular , Fibroblastos , Glutamina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Linaje , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Unión Proteica , Sinapsis/metabolismo , Transcriptoma
18.
Hum Mol Genet ; 26(14): 2634-2648, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28472294

RESUMEN

Although the genetic contribution is under debate, biological studies in multiple mouse models have suggested that the Disrupted-in-Schizophrenia-1 (DISC1) protein may contribute to susceptibility to psychiatric disorders. In the present study, we took the advantages of the Drosophila model to dissect the molecular pathways that can be affected by DISC1 in the context of pathology-related phenotypes. We found that three pathways that include the homologs of Drosophila Dys, Trio, and Shot were downregulated by introducing a C-terminal truncated mutant DISC1. Consistently, these three molecules were downregulated in the induced pluripotent stem cell-derived forebrain neurons from the subjects carrying a frameshift deletion in DISC1 C-terminus. Importantly, the three pathways were underscored in the pathophysiology of psychiatric disorders in bioinformatics analysis. Taken together, our findings are in line with the polygenic theory of psychiatric disorders.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos Mentales/genética , Trastornos Mentales/patología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Herencia Multifactorial , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Fenotipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Eliminación de Secuencia
19.
Nucleic Acids Res ; 44(18): 8610-8620, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27580721

RESUMEN

Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.


Asunto(s)
Corteza Cerebral/citología , Perfilación de la Expresión Génica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Infección por el Virus Zika/genética , Virus Zika/fisiología , Muerte Celular/genética , Línea Celular , Reparación del ADN/genética , Replicación del ADN/genética , Virus del Dengue/fisiología , Humanos , Transducción de Señal/genética , Especificidad de la Especie , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/genética , Infección por el Virus Zika/virología
20.
J Neurosci Res ; 95(5): 1097-1109, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28186671

RESUMEN

Neurodevelopmental and psychiatric disorders, including autism spectrum disorder and schizophrenia, are complex and heterogeneous disorders that affect a large portion of the world's population. While the causes are still poorly understood, currently available treatments are limited; the development of rational therapeutics based on an understanding of the etiology and pathogenesis of the disease is imperative. The breakthrough technology of deriving induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of healthy subjects or patients, offers an unprecedented opportunity to recapitulate both normal and pathological development of human tissue, thereby opening up a new avenue for disease modeling and drug development in a more genetically tractable and disease-relevant system. Here, I review the recent progress in the use of human iPSCs for modeling neurodevelopmental and psychiatric disorders and developing novel therapeutic strategies, and discuss challenges in this rapidly moving field. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Trastorno del Espectro Autista/patología , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Esquizofrenia/patología , Trastorno del Espectro Autista/terapia , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Esquizofrenia/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA