Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 609(7926): 400-407, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35768504

RESUMEN

The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína Fosfatasa 1 , Transducción de Señal , Proteínas ras , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación , Fosfoserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/ultraestructura , Especificidad por Sustrato , Quinasas raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestructura
2.
J Biol Chem ; 292(51): 21011-21022, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29074616

RESUMEN

Resveratrol, a polyphenol found in various plant sources, has gained attention as a possible agent responsible for the purported health benefits of certain foods, such as red wine. Despite annual multi-million dollar market sales as a nutriceutical, there is little consensus about the physiological roles of resveratrol. One suggested molecular target of resveratrol is eukaryotic topoisomerase II (topo II), an enzyme essential for chromosome segregation and DNA supercoiling homeostasis. Interestingly, resveratrol is chemically similar to ICRF-187, a clinically approved chemotherapeutic that stabilizes an ATP-dependent dimerization interface in topo II to block enzyme activity. Based on this similarity, we hypothesized that resveratrol may antagonize topo II by a similar mechanism. Using a variety of biochemical assays, we find that resveratrol indeed acts through the ICRF-187 binding locus, but that it inhibits topo II by preventing ATPase domain dimerization rather than stabilizing it. This work presents the first comprehensive analysis of the biochemical effects of both ICRF-187 and resveratrol on the human isoforms of topo II, and reveals a new mode for the allosteric regulation of topo II through modulation of ATPase status. Natural polyphenols related to resveratrol that have been shown to impact topo II function may operate in a similar manner.


Asunto(s)
Resveratrol/farmacología , Inhibidores de Topoisomerasa II/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Sustitución de Aminoácidos , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Dexrazoxano/química , Dexrazoxano/farmacología , Humanos , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Resveratrol/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Inhibidores de Topoisomerasa II/química
3.
Cell Rep ; 43(6): 114313, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838224

RESUMEN

Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.


Asunto(s)
Resistencia a Antineoplásicos , Receptores ErbB , Humanos , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Línea Celular Tumoral , Edición Génica/métodos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sistemas CRISPR-Cas/genética , Mutación/genética , Mutagénesis
4.
ACS Med Chem Lett ; 15(6): 864-872, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894924

RESUMEN

We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an ∼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.

5.
Nat Struct Mol Biol ; 27(2): 134-141, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31988522

RESUMEN

The RAS-RAF-MEK-ERK signaling axis is frequently activated in human cancers. Physiological concentrations of ATP prevent formation of RAF kinase-domain (RAFKD) dimers that are critical for activity. Here we present a 2.9-Å-resolution crystal structure of human BRAFKD in complex with MEK and the ATP analog AMP-PCP, revealing interactions between BRAF and ATP that induce an inactive, monomeric conformation of BRAFKD. We also determine how 14-3-3 relieves the negative regulatory effect of ATP through a 2.5-Å-resolution crystal structure of the BRAFKD-14-3-3 complex, in which dimeric 14-3-3 enforces a dimeric BRAFKD assembly to increase BRAF activity. Our data suggest that most oncogenic BRAF mutations alter interactions with ATP and counteract the negative effects of ATP binding by lowering the threshold for RAF dimerization and pathway activation. Our study establishes a framework for rationalizing oncogenic BRAF mutations and provides new avenues for improved RAF-inhibitor discovery.


Asunto(s)
Proteínas 14-3-3/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas 14-3-3/química , Adenosina Trifosfato/análogos & derivados , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/química
6.
Elife ; 72018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29595473

RESUMEN

Type II topoisomerases manage DNA supercoiling and aid chromosome segregation using a complex, ATP-dependent duplex strand passage mechanism. Type IIB topoisomerases and their homologs support both archaeal/plant viability and meiotic recombination. Topo VI, a prototypical type IIB topoisomerase, comprises two Top6A and two Top6B protomers; how these subunits cooperate to engage two DNA segments and link ATP turnover to DNA transport is poorly understood. Using multiple biochemical approaches, we show that Top6B, which harbors the ATPase activity of topo VI, recognizes and exploits the DNA crossings present in supercoiled DNA to stimulate subunit dimerization by ATP. Top6B self-association in turn induces extensive DNA bending, which is needed to support duplex cleavage by Top6A. Our observations explain how topo VI tightly coordinates DNA crossover recognition and ATP binding with strand scission, providing useful insights into the operation of type IIB topoisomerases and related meiotic recombination and GHKL ATPase machineries.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Methanosarcina/enzimología , Conformación de Ácido Nucleico , Adenosina Trifosfato/metabolismo , División del ADN , Subunidades de Proteína/metabolismo
7.
J Mol Biol ; 424(3-4): 109-24, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22841979

RESUMEN

Type II topoisomerases are required for the management of DNA superhelicity and chromosome segregation, and serve as frontline targets for a variety of small-molecule therapeutics. To better understand how these enzymes act in both contexts, we determined the 2.9-Å-resolution structure of the DNA cleavage core of human topoisomerase IIα (TOP2A) bound to a doubly nicked, 30-bp duplex oligonucleotide. In accord with prior biochemical and structural studies, TOP2A significantly bends its DNA substrate using a bipartite, nucleolytic center formed at an N-terminal dimerization interface of the cleavage core. However, the protein also adopts a global conformation in which the second of its two inter-protomer contact points, one at the C-terminus, has separated. This finding, together with comparative structural analyses, reveals that the principal site of DNA engagement undergoes highly quantized conformational transitions between distinct binding, cleavage, and drug-inhibited states that correlate with the control of subunit-subunit interactions. Additional consideration of our TOP2A model in light of an etoposide-inhibited complex of human topoisomerase IIß (TOP2B) suggests possible modification points for developing paralog-specific inhibitors to overcome the tendency of topoisomerase II-targeting chemotherapeutics to generate secondary malignancies.


Asunto(s)
Antígenos de Neoplasias/química , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN/química , ADN/química , Antígenos de Neoplasias/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , División del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA