Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Air Waste Manag Assoc ; 72(3): 256-270, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994684

RESUMEN

A combustion model, originally developed to simulate the destruction of chemical warfare agents, was modified to include C1-C3 fluorinated organic reactions and kinetics compiled by the National Institute of Standards and Technology (NIST). A simplified plug flow reactor version of this model was used to predict the destruction efficiency (DE) and formation of products of incomplete combustion (PICs) for three C1 and C2 per- and poly-fluorinated alkyl substances (PFAS) (CF4, CHF3, and C2F6) and compare predicted values to Fourier Transform Infrared spectroscopy (FTIR)-based measurements made from a pilot-scale EPA research combustor (40-64 kW, natural gas-fired, 20% excess air). PFAS were introduced through the flame, and at post-flame locations along a time-temperature profile allowing for simulation of direct flame and non-flame injection, and examination of the sensitivity of PFAS destruction on temperature and free radical flame chemistry. Results indicate that CF4 is particularly difficult to destroy with DEs ranging from ~60 to 95% when introduced through the flame at increasing furnace loads. Due to the presence of lower energy C-H and C-C bonds to initiate molecular dissociation reactions, CHF3 and C2F6 were easier to destroy, exhibiting DEs >99% even when introduced post-flame. However, these lower bond energies may also lead to the formation of CF2 and CF3 radicals at thermal conditions unable to fully de-fluorinate these species and formation of fluorinated PICs. DEs determined by the model agreed well with the measurements for CHF3 and C2F6 but overpredicted DEs at high temperatures and underpredicted DEs at low temperatures for CF4. However, high DEs do not necessarily mean absence of PICs, with both model predictions and limited FTIR measurements indicating the presence of similar fluorinated PICs in the combustion emissions. The FTIR was able to provide real-time emission measurements and additional model development may improve prediction of PFAS destruction and PIC formation.Implications: The widespread use of PFAS for over 70 years has led to their presence in multiple environmental matrixes including human tissues. While the chemical and thermal stability of PFAS are related to their desirable properties, this stability means that PFAS are very slow to degrade naturally and potentially difficult to destroy completely through thermal treatment processes often used for organic waste destruction. In this applied combustion study, model PFAS compounds were introduced to a pilot-scale EPA research furnace. Real-time FTIR measurements were performed of the injected compound and trace products of incomplete combustion (PICs) at operationally relevant conditions, and the results were successfully compared to kinetic model predictions of those same PFAS destruction efficiencies and trace gas-phase PIC constituents. This study represents a significant potential enhancement in available tools to support effective management of PFAS-containing wastes.


Asunto(s)
Fluorocarburos , Incineración , Fluorocarburos/análisis , Humanos , Incineración/métodos , Cinética , Temperatura
2.
Proc Combust Inst ; 36(6): 4029-4037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30344457

RESUMEN

Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR=1.2-1.4) and constant residence times (2.3s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6µm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxycombustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6µm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100 and 550°C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

3.
Sci Total Environ ; 287(3): 265-74, 2002 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-11993968

RESUMEN

Airborne particulate matter (PM) is an important environmental issue because of its association with acute respiratory distress in humans, although the specific particle characteristics that cause lung damage have yet to be identified. Particle size, acid aerosols, water-soluble transition metals (e.g. Cu, Fe, V, Ni and Zn), polyaromatic hydrocarbons, and particle composition are the focus of several popular hypotheses addressing respiratory distress. All of the above mentioned characteristics are contained in PM generated from the combustion of both pulverized coal, and biomass, including dried municipal sewage sludge (MSS). In this investigation, we report results from collaborative interdisciplinary research on the inhalation health risks caused by particles emitted from the co-combustion of municipal sewage sludge (MSS) and coal. A solid particle resuspension system was implemented to resuspend ash particles. Mice were exposed to resuspended coal and MSS/coal ash particles. Mice exposed to MSS/coal ash particulate demonstrated significant increases in lung permeability, a marker of the early stages of pathological lung injury, while the mice exposed to coal-only ash did not. These results show that the composition of particles actually inhaled is important in determining lung damage. Zinc was significantly more concentrated in the MSS/coal ash than coal ash particles and the pH of these particles did not differ significantly. Specifically, an MSS/coal mixture, when burned, emits particles that may cause significantly more lung damage than coal alone, and that consequently, the use of MSS as a 'green', CO2-neutral replacement fuel should be carefully considered.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Mineral/efectos adversos , Exposición por Inhalación , Síndrome de Dificultad Respiratoria/etiología , Aguas del Alcantarillado/química , Animales , Hidrocarburos Aromáticos/análisis , Concentración de Iones de Hidrógeno , Incineración , Pulmón/efectos de los fármacos , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Metales Pesados/análisis , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Eliminación de Residuos , Medición de Riesgo , Aguas del Alcantarillado/efectos adversos , Solubilidad
4.
Chemosphere ; 51(10): 1121-8, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12718978

RESUMEN

Inhaled airborne particulate matter (PM) represents a potentially significant health hazard to humans. Exposure to PM strongly correlates with pulmonary inflammation and incidences of severe respiratory distress, including increased hospital admissions for breathing disorders, asthma, emphysema, and chronic bronchitis. PM generated from the combustion of fuel oils and coals contain a number of water-soluble transition metals including Fe, V, and Zn. We have evaluated the impact of PM types with varying composition collected from the combustion of oils and coals on the health and metabolism of lung cell cultures. Three colorimetric assays (sulforhodamine B (SRB), Janus green, and MTT) have been adapted to quantify the impact of PM on rat lung alveolar type II epithelial cells (RLE-6TN cells). The PM toxicity metrics evaluated were inhibition of cell proliferation (SRB and Janus green) and inhibition of cellular metabolism (MTT). Cell proliferation is inhibited in a consistent dose-dependent manner by PM concentrations from 25 to 250 microg/ml. At a level of 100 microg/ml, oil-derived PM diminishes cell metabolism by as much as 40% relative to controls; the degree of inhibition is strongly dependent on PM particle size and metal content. Conversely, coal-derived PM at the same dosage diminishes cell metabolism by no more than 20% relative to controls. All three assays provide highly repeatable results and consistent toxicity rankings of the PMs evaluated. Overall, metabolic inhibition as measured by the MTT assay was deemed the most appropriate metric for PM toxicity, primarily due to its applicability with in vivo-like confluent cell monolayers.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , División Celular/efectos de los fármacos , Aceites Combustibles , Metales Pesados/toxicidad , Alveolos Pulmonares/citología , Animales , Técnicas de Cultivo de Célula , Carbón Mineral , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Incineración , Tamaño de la Partícula , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Ratas
5.
Chemosphere ; 51(10): 1129-37, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12718979

RESUMEN

This paper is concerned with health effects from the inhalation of particulate matter (PM) emitted from the combustion of coal, and from the co-combustion of refuse derived fuel (RDF) and pulverized coal mixtures, under both normal and low NO(x) conditions. Specific issues focus on whether the addition of RDF to coal has an effect on PM toxicity, and whether the application of staged combustion (for low NO(x)) may also be a factor in this regard. Ash particles were sampled and collected from a pilot scale combustion unit and then re-suspended and diluted to concentrations of approximately 1000 microg/m(3). These particles were inhaled by mice, which were held in a nose-only exposure configuration. Exposure tests were for 1 h per day, and involved three sets (eight mice per set) of mice. These three sets were exposed over 8, 16, and 24 consecutive days, respectively. Pathological lung damage was measured in terms of increases in lung permeability. Results show that the re-suspended coal/RDF ash appeared to cause very different effects on lung permeability than did coal ash alone. In addition, it was also shown that a "snapshot" of lung properties after a fixed number of daily 1-h exposures, can be misleading, since apparent repair mechanisms cause lung properties to change over a period of time. For the coal/RDF, the greatest lung damage (in terms of lung permeability increase) occurred at the short exposure period of 8 days, and thereafter appeared to be gradually repaired. Ash from staged (low NO(x)) combustion of coal/RDF appeared to cause greater lung injury than that from unstaged (high NO(x)) coal/RDF combustion, although the temporal behavior and (apparent) repair processes in each case were similar. In contrast to this, coal ash alone showed a slight decrease of lung permeability after 1 and 3 days, and this disappeared after 12 days. These observations are interpreted in the light of mechanisms proposed in the literature. The results all suggest that the composition of particles actually inhaled is important in determining lung injury. Particle size segregated leachability measurements showed that water soluble sulfur, zinc, and vanadium, but not iron, were present in the coal/RDF ash particles, which caused lung permeabilities to increase. However, the differences in health effects between unstaged and staged coal/RDF combustion could not be attributed to variations in pH values of the leachate.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Carbón Mineral , Exposición por Inhalación , Pulmón/patología , Óxidos de Nitrógeno/efectos adversos , Eliminación de Residuos , Animales , Incineración , Pulmón/efectos de los fármacos , Pulmón/fisiología , Ratones , Óxidos de Nitrógeno/administración & dosificación , Tamaño de la Partícula , Permeabilidad
6.
Environ Sci Technol ; 42(7): 2594-9, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18505002

RESUMEN

Gas-phase reactions between elemental mercury and chlorine are a possible pathway to producing oxidized mercury species such as mercuric chloride in combustion systems. This study examines the effect of the chemistry of a commonly used sample conditioning system on apparent and actual levels of mercury oxidation in a methane-fired, 0.3 kW, quartz-lined reactor in which gas composition (HCl, Cl2, NOx, SO2) and quench rate were varied. The sample conditioning system included two impingers in parallel: one containing an aqueous solution of KCl to trap HgCl2, and one containing an aqueous solution of SnCl2 to reduce HgCl2 to elemental mercury (Hg0). Gas-phase concentrations of Cl2 as low as 1.5 ppmv were sufficient to oxidize a significant fraction of the elemental mercury in the KCl impinger via the hypochlorite ion. Furthermore, these low, but interfering levels of Cl2 appeared to persist in flue gases from several doped rapidly mixed flames with varied post flame temperature quench rates. The addition of 0.5 wt% sodium thiosulfate to the KCl solution completely prevented the oxidation from occurring in the impinger. The addition of thiosulfate did not inhibit the KCl impinger's ability to capture HgCl2. The effectiveness of the thiosulfate was unchanged by NO or SO2. These results bring into question laboratory scale experimental data on mercury oxidation where wet chemistry was used to partition metallic and oxidized mercury without the presence of sufficient levels of SO2.


Asunto(s)
Gases/química , Mercurio/química , Oxidación-Reducción , Agua
7.
Environ Sci Technol ; 39(13): 5087-94, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16053114

RESUMEN

Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a postflame location in the combustor. Cesium readily vaporized in the high-temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high-temperature waste processing including incineration and vitrification.


Asunto(s)
Contaminantes Radiactivos del Aire/aislamiento & purificación , Contaminación del Aire/prevención & control , Cesio/química , Cesio/aislamiento & purificación , Caolín/química , Estroncio/química , Estroncio/aislamiento & purificación , Adsorción , Incineración , Cinética , Temperatura , Volatilización
8.
Environ Sci Technol ; 36(12): 2772-6, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12099478

RESUMEN

Municipal sewage sludge (MSS) is formed during wastewater treatment and its processing and disposal represent one of the most environmentally challenging aspects of the wastewater treating process. One disposal option currently being considered is a process involving heat treatment (to render the sludge biologically inactive) followed by dewatering, drying, pulverizing, and combustion. This research focuses on fine particle emissions from the combustion of dried, treated, MSS, cofired with either natural gas or pulverized Ohio bituminous coal as a supplemental fuel. These fuels were burned at 13 kW in a downflow laboratory combustor designed to replicate time/temperature histories and particle concentrations typical of practical combustion units yet also sufficiently well defined aerodynamically to allow elucidation of mechanisms. Size-segregated particle size distributions were obtained by isokinetic sampling followed by dilution/quenching and passage into a Berner Low-Pressure Impactor. Major and trace elements were analyzed by flame and graphite furnace atomic absorption spectroscopy. Four particle size regions were identified: furnace vapor-phase material that formed ultrafine particles either in or just before the sampling probe, submicron-sized particles formed during the combustion process, micron-sized fine particles, and larger supermicron sized bulk fly ash particles. The fuel mix appears to influence trace metal partitioning routes and the composition of fine particulate matter in the exhaust. Cofiring of MSS with coal increases the ultrafine/submicron particle emission compared to firing coal alone. This increase in ultrafine/submicron particles is most likely due to an interaction between species derived from MSS (possibly alkali metals) and those from coal (possibly sulfur and/or chlorine). Vapor-to-solid phase partitioning of arsenic and selenium is controlled by surface reaction with active surface sites during MSS combustion with either gas or coal. Co-combustion of MSS with the Ohio bituminous coal allows the arsenic and selenium to be reactively scavenged by calcium, thus changing the speciation of the trace metal emitted. Ohio bituminous coal alone contained insufficient calcium to accomplish this same scavenging effect.


Asunto(s)
Contaminantes Atmosféricos/análisis , Eliminación de Residuos , Aguas del Alcantarillado/química , Carbón Mineral , Monitoreo del Ambiente , Incineración , Tamaño de la Partícula , Temperatura , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA