Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 97(3): 893-908, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36645448

RESUMEN

Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety.


Asunto(s)
Medición de Riesgo , Humanos , Europa (Continente)
2.
Aquat Toxicol ; 63(3): 243-56, 2003 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-12711414

RESUMEN

The aim of this study was to investigate the short-term (2 weeks) effects of the herbicide metsulfuron methyl alone and in combination with the insecticide cypermethrin in freshwater enclosures (80 l). We used a factorial design with four levels of herbicide (0, 1, 5, 20 microg/l) and two levels of insecticide (0 and 0.05 microg/l). The root growth of the macrophyte species Elodea canadensis and Myriophyllum spicatum decreased following exposure to the lowest concentration of metsulfuron methyl tested. Metsulfuron methyl exposure resulted in a decreased pH in the aquatic enclosure at the lowest concentration tested, which is most likely a further indication of decreased macrophyte primary production. The biomass of periphytic algae growing on the leaves of M. spicatum increased in the enclosures exposed to metsulfuron methyl. The species composition of the periphytic algae differed significantly from the controls in the enclosures exposed to 20 microg/l of the herbicide. The increased biomass of periphytic algae on the leaves of the macrophytes is probably an indirect effect of the herbicide exposure. The exposure to metsulfuron methyl possibly induced a leakage of nutrients from the macrophyte leaves, which promoted an increased algal growth. The exposure to metsulfuron methyl did not alter the biomass or the species composition of the phytoplankton community. The zooplankton communities in the enclosures were dominated by rotifers, which were not affected by the exposure to cypermethrin. However, a cypermethrin exposure of 0.05 microg/l initially decreased the abundance of copepod nauplii. Ten days after exposure, the abundance of nauplii was significantly higher in the insecticide-exposed enclosures compared with the non-exposed enclosures. This might be an indication of a sub-lethal stress response, which either increased the number of offspring produced or induced an increased hatching of copepod resting stages. No combined effects of the herbicide and insecticide exposure, either direct or indirect, were observed in the enclosure study. Significant effects on the macrophytes were observed following exposure to 1 microg metsulfuron methyl per litre in the enclosure study. Furthermore, a single species laboratory assay indicated that the shoot elongation of E. canadensis decreased following exposure to >or=0.1 microg metsulfuron methyl per litre. These concentrations are well within the range of expected environmental concentrations, thus this study shows that aquatic ecosystems, in particular those which are macrophyte-dominated, may be affected by metsulfuron methyl at concentrations that may well occur in water bodies adjacent to agricultural land.


Asunto(s)
Arilsulfonatos/toxicidad , Hydrocharitaceae/efectos de los fármacos , Modelos Biológicos , Piretrinas/toxicidad , Saxifragaceae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Biomasa , Clorofila/metabolismo , Clorofila A , Interacciones Farmacológicas , Ecosistema , Ambiente Controlado , Exposición a Riesgos Ambientales , Agua Dulce/química , Herbicidas/toxicidad , Insecticidas/toxicidad , Análisis Multivariante , Nivel sin Efectos Adversos Observados , Fitoplancton/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Pruebas de Toxicidad Aguda/métodos , Zooplancton/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 57(3): 383-98, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15041261

RESUMEN

The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated eutrophic ecosystems with a high Lemna surface coverage (Lemna). This paper describes the fate of the chemicals as well as their effects on the growth of Myriophyllum spicatum and the periphytic algal community. In the Elodea-dominated microcosms significant increase in the biomass and alterations of species composition of the periphytic algae were observed, but no effect on M. spicatum growth could be recorded in response to the treatment. The opposite was found in the Lemna-dominated microcosms, in which decreased growth of M. spicatum was observed but no alterations could be found in the periphytic community. In the Elodea-dominated microcosms the species composition of the periphytic algae diverged from that of the control following treatment with 0.5% spray drift emission of the label-recommended rate (5% for lambda-cyhalothrin), while reduced growth of M. spicatum in the Lemna-dominated microcosms was recorded at 2% drift (20% for lambda-cyhalothrin). This study shows that the structure of the ecosystem influences the final effect of pesticide exposure.


Asunto(s)
Ecosistema , Eucariontes/crecimiento & desarrollo , Magnoliopsida , Plaguicidas/envenenamiento , Contaminantes Químicos del Agua/envenenamiento , Interacciones Farmacológicas , Cadena Alimentaria , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA