Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R712-R724, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811712

RESUMEN

High versus low aerobic capacity significantly impacts the risk for metabolic diseases. Rats selectively bred for high or low intrinsic aerobic capacity differently modify hepatic bile acid metabolism in response to high-fat diets (HFDs). Here we tested if a bile acid sequestrant would alter hepatic and whole body metabolism differently in rats with high and low aerobic capacity fed a 1-wk HFD. Male rats (8 mo of age) that were artificially selected to be high (HCR) and low-capacity runners (LCR) with divergent intrinsic aerobic capacities were transitioned from a low-fat diet (LFD, 10% fat) to an HFD (45% fat) with or without a bile acid sequestrant (BA-Seq, 2% cholestyramine resin) for 7 days while maintained in an indirect calorimetry system. HFD + BA-Seq increased fecal excretion of lipids and bile acids and prevented weight and fat mass gain in both strains. Interestingly, HCR rats had increased adaptability to enhance fecal bile acid and lipid loss, resulting in more significant energy loss than their LCR counterpart. In addition, BA-Seq induced a greater expression of hepatic CYP7A1 gene expression, the rate-limiting enzyme of bile acid synthesis in HCR rats both on HFD and HFD + BA-Seq diets. HCR displayed a more significant reduction of RQ in response to HFD than LCR, but HFD + BA-Seq lowered RQ in both groups compared with HFD alone, demonstrating a pronounced impact on metabolic flexibility. In conclusion, BA-Seq provides uniform metabolic benefits for metabolic flexibility and adiposity, but rats with higher aerobic capacity display adaptability for hepatic bile acid metabolism.NEW & NOTEWORTHY The administration of bile acid sequestrant (BA-Seq) has uniform metabolic benefits in terms of metabolic flexibility and adiposity in rats with high and low aerobic capacity. However, rats with higher aerobic capacity demonstrate greater adaptability in hepatic bile acid metabolism, resulting in increased fecal bile acid and lipid loss, as well as enhanced fecal energy loss.


Asunto(s)
Metabolismo Energético , Hígado , Ratas , Masculino , Animales , Metabolismo Energético/genética , Hígado/metabolismo , Dieta Alta en Grasa , Lípidos , Ácidos y Sales Biliares/metabolismo
2.
Geroscience ; 46(2): 2207-2222, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37880490

RESUMEN

Age-associated declines in aerobic capacity promote the development of various metabolic diseases. In rats selectively bred for high/low intrinsic aerobic capacity, greater aerobic capacity reduces susceptibility to metabolic disease while increasing longevity. However, little remains known how intrinsic aerobic capacity protects against metabolic disease, particularly with aging. Here, we tested the effects of aging and intrinsic aerobic capacity on systemic energy expenditure, metabolic flexibility and mitochondrial protein synthesis rates using 24-month-old low-capacity (LCR) or high-capacity runner (HCR) rats. Rats were fed low-fat diet (LFD) or high-fat diet (HFD) for eight weeks, with energy expenditure (EE) and metabolic flexibility assessed utilizing indirect calorimetry during a 48 h fast/re-feeding metabolic challenge. Deuterium oxide (D2O) labeling was used to assess mitochondrial protein fraction synthesis rates (FSR) over a 7-day period. HCR rats possessed greater EE during the metabolic challenge. Interestingly, HFD induced changes in respiratory exchange ratio (RER) in male and female rats, while HCR female rat RER was largely unaffected by diet. In addition, analysis of protein FSR in skeletal muscle, brain, and liver mitochondria showed tissue-specific adaptations between HCR and LCR rats. While brain and liver protein FSR were altered by aerobic capacity and diet, these effects were less apparent in skeletal muscle. Overall, we provide evidence that greater aerobic capacity promotes elevated EE in an aged state, while also regulating metabolic flexibility in a sex-dependent manner. Modulation of mitochondrial protein FSR by aerobic capacity is tissue-specific with aging, likely due to differential energetic requirements by each tissue.


Asunto(s)
Metabolismo Energético , Enfermedades Metabólicas , Ratas , Masculino , Femenino , Animales , Metabolismo Energético/fisiología , Hígado/metabolismo , Dieta Alta en Grasa , Enfermedades Metabólicas/metabolismo , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA