Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Biol Sci ; 288(1943): 20202307, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33499785

RESUMEN

Monitoring the body condition of free-ranging marine mammals at different life-history stages is essential to understand their ecology as they must accumulate sufficient energy reserves for survival and reproduction. However, assessing body condition in free-ranging marine mammals is challenging. We cross-validated two independent approaches to estimate the body condition of humpback whales (Megaptera novaeangliae) at two feeding grounds in Canada and Norway: animal-borne tags (n = 59) and aerial photogrammetry (n = 55). Whales that had a large length-standardized projected area in overhead images (i.e. whales looked fatter) had lower estimated tissue body density (TBD) (greater lipid stores) from tag data. Linking both measurements in a Bayesian hierarchical model to estimate the true underlying (hidden) tissue body density (uTBD), we found uTBD was lower (-3.5 kg m-3) in pregnant females compared to adult males and resting females, while in lactating females it was higher (+6.0 kg m-3). Whales were more negatively buoyant (+5.0 kg m-3) in Norway than Canada during the early feeding season, possibly owing to a longer migration from breeding areas. While uTBD decreased over the feeding season across life-history traits, whale tissues remained negatively buoyant (1035.3 ± 3.8 kg m-3) in the late feeding season. This study adds confidence to the effectiveness of these independent methods to estimate the body condition of free-ranging whales.


Asunto(s)
Yubarta , Animales , Teorema de Bayes , Canadá , Femenino , Lactancia , Lípidos , Masculino , Noruega , Fotogrametría , Embarazo
2.
J Exp Biol ; 223(Pt 7)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32107307

RESUMEN

Anthropogenic noise sources range from intermittent to continuous, with seismic and navy sonar technology moving towards near-continuous transmissions. Continuous active sonar (CAS) may be used at a lower amplitude than traditional pulsed active sonar (PAS), but potentially with greater cumulative sound energy. We conducted at-sea experiments to contrast the effects of navy PAS versus CAS on sperm whale behaviour using animal-attached sound- and movement-recording tags (n=16 individuals) in Norway. Changes in foraging effort and proxies for foraging success and cost during sonar and control exposures were assessed while accounting for baseline variation [individual effects, time of day, bathymetry and blackfish (pilot/killer whale) presence] in generalized additive mixed models (GAMMs). We found no reduction in time spent foraging during exposures to medium-level PAS (MPAS) transmitted at the same peak amplitude as CAS. In contrast, we found similar reductions in foraging during CAS (d.f.=1, F=8.0, P=0.005) and higher amplitude PAS (d.f.=1, F=20.8, P<0.001) when received at similar energy levels integrated over signal duration. These results provide clear support for sound energy over amplitude as the response driver. We discuss the importance of exposure context and the need to measure cumulative sound energy to account for intermittent versus more continuous sources in noise impact assessments.


Asunto(s)
Cachalote , Orca , Acústica , Animales , Ruido/efectos adversos , Noruega , Sonido
3.
Proc Biol Sci ; 286(1899): 20182592, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30890101

RESUMEN

Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments ( n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway. Animals were tagged with high-resolution archival tags ( n = 1 per experiment) or medium-resolution satellite tags ( n = 9 in total) and subsequently exposed to sonar. We also deployed bottom-moored recorders to acoustically monitor for whales in the exposed area. Tagged whales initiated avoidance of the sound source over a wide range of distances (0.8-28 km), with responses characteristic of beaked whales. Both onset and intensity of response were better predicted by received sound pressure level (SPL) than by source distance. Avoidance threshold SPLs estimated for each whale ranged from 117-126 dB re 1 µPa, comparable to those of other tagged beaked whales. In this pristine underwater acoustic environment, we found no indication that the source distances tested in our experiments modulated the behavioural effects of sonar, as has been suggested for locations where whales are frequently exposed to sonar.


Asunto(s)
Ruido/efectos adversos , Natación , Ballenas/fisiología , Estimulación Acústica , Animales , Regiones Árticas , Noruega , Océanos y Mares
4.
J Exp Biol ; 220(Pt 22): 4150-4161, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141878

RESUMEN

Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source-whale range (Rmin) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by -3.0 dB (SPLmax), -2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPLmax), -3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship.


Asunto(s)
Acústica , Yubarta/fisiología , Ruido , Navíos , Animales
5.
J Exp Biol ; 219(Pt 15): 2271-5, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27229472

RESUMEN

Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species.


Asunto(s)
Acústica , Yubarta/fisiología , Ruido , Reología , Animales , Presión , Natación/fisiología
6.
Adv Exp Med Biol ; 875: 1223-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611090

RESUMEN

Loudness perception can be studied based on the assumption that sounds of equal loudness elicit equal reaction time (RT; or "response latency"). We measured the underwater RTs of a harbor porpoise to narrowband frequency-modulated sounds and constructed six equal-latency contours. The contours paralleled the audiogram at low sensation levels (high RTs). At high-sensation levels, contours flattened between 0.5 and 31.5 kHz but dropped substantially (RTs shortened) beyond those frequencies. This study suggests that equal-latency-based frequency weighting can emulate noise perception in porpoises for low and middle frequencies but that the RT-loudness correlation is relatively weak for very high frequencies.


Asunto(s)
Phocoena/fisiología , Tiempo de Reacción/fisiología , Agua de Mar , Sonido , Animales
7.
Adv Exp Med Biol ; 875: 1197-203, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611087

RESUMEN

Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.


Asunto(s)
Exposición a Riesgos Ambientales , Modelos Teóricos , Sonido , Animales
8.
Adv Exp Med Biol ; 875: 589-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611008

RESUMEN

In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis.


Asunto(s)
Cetáceos/fisiología , Exposición a Riesgos Ambientales , Agua de Mar , Sonido , Animales , Conducta Animal , Noruega
9.
J Exp Biol ; 217(Pt 3): 359-69, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24477609

RESUMEN

Loudness perception by human infants and animals can be studied under the assumption that sounds of equal loudness elicit equal reaction times (RTs). Simple RTs of a harbour porpoise to narrowband frequency-modulated signals were measured using a behavioural method and an RT sensor based on infrared light. Equal latency contours, which connect equal RTs across frequencies, for reference values of 150-200 ms (10 ms intervals) were derived from median RTs to 1 s signals with sound pressure levels (SPLs) of 59-168 dB re. 1 µPa and centre frequencies of 0.5, 1, 2, 4, 16, 31.5, 63, 80 and 125 kHz. The higher the signal level was above the hearing threshold of the harbour porpoise, the quicker the animal responded to the stimulus (median RT 98-522 ms). Equal latency contours roughly paralleled the hearing threshold at relatively low sensation levels (higher RTs). The difference in shape between the hearing threshold and the equal latency contours was more pronounced at higher levels (lower RTs); a flattening of the contours occurred for frequencies below 63 kHz. Relationships of the equal latency contour levels with the hearing threshold were used to create smoothed functions assumed to be representative of equal loudness contours. Auditory weighting functions were derived from these smoothed functions that may be used to predict perceived levels and correlated noise effects in the harbour porpoise, at least until actual equal loudness contours become available.


Asunto(s)
Audición , Phocoena/fisiología , Estimulación Acústica , Animales , Audiometría , Percepción Auditiva , Umbral Auditivo , Humanos , Ruido , Tiempo de Reacción , Sonido
10.
Conserv Biol ; 28(1): 119-28, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24471782

RESUMEN

Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Exposición a Riesgos Ambientales , Modelos Biológicos , Ruido/prevención & control , Orca/fisiología , Acústica , Animales , Percepción Auditiva , Simulación por Computador , Ruido/efectos adversos , Telecomunicaciones
11.
J Acoust Soc Am ; 135(2): 975-93, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25234905

RESUMEN

Eight experimentally controlled exposures to 1-2 kHz or 6-7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 µPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales.


Asunto(s)
Percepción Auditiva , Reacción de Prevención , Conducta Animal , Sonido , Natación , Ultrasonido/métodos , Orca/psicología , Estimulación Acústica , Animales , Umbral Auditivo , Teorema de Bayes , Simulación por Computador , Ecosistema , Movimiento (Física) , Océanos y Mares , Presión , Factores de Tiempo , Orca/fisiología
12.
Sci Rep ; 13(1): 21771, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065973

RESUMEN

Acoustic sequences have been described in a range of species and in varying complexity. Cetaceans are known to produce complex song displays but these are generally limited to mysticetes; little is known about call combinations in odontocetes. Here we investigate call combinations produced by killer whales (Orcinus orca), a highly social and vocal species. Using acoustic recordings from 22 multisensor tags, we use a first order Markov model to show that transitions between call types or subtypes were significantly different from random, with repetitions and specific call combinations occurring more often than expected by chance. The mixed call combinations were composed of two or three calls and were part of three call combination clusters. Call combinations were recorded over several years, from different individuals, and several social clusters. The most common call combination cluster consisted of six call (sub-)types. Although different combinations were generated, there were clear rules regarding which were the first and last call types produced, and combinations were highly stereotyped. Two of the three call combination clusters were produced outside of feeding contexts, but their function remains unclear and further research is required to determine possible functions and whether these combinations could be behaviour- or group-specific.


Asunto(s)
Orca , Humanos , Animales , Vocalización Animal , Conducta Social , Islandia , Espectrografía del Sonido
13.
Mov Ecol ; 11(1): 33, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291674

RESUMEN

BACKGROUND: High-resolution sound and movement recording tags offer unprecedented insights into the fine-scale foraging behaviour of cetaceans, especially echolocating odontocetes, enabling the estimation of a series of foraging metrics. However, these tags are expensive, making them inaccessible to most researchers. Time-Depth Recorders (TDRs), which have been widely used to study diving and foraging behaviour of marine mammals, offer a more affordable alternative. Unfortunately, data collected by TDRs are bi-dimensional (time and depth only), so quantifying foraging effort from those data is challenging. METHODS: A predictive model of the foraging effort of sperm whales (Physeter macrocephalus) was developed to identify prey capture attempts (PCAs) from time-depth data. Data from high-resolution acoustic and movement recording tags deployed on 12 sperm whales were downsampled to 1 Hz to match the typical TDR sampling resolution and used to predict the number of buzzes (i.e., rapid series of echolocation clicks indicative of PCAs). Generalized linear mixed models were built for dive segments of different durations (30, 60, 180 and 300 s) using multiple dive metrics as potential predictors of PCAs. RESULTS: Average depth, variance of depth and variance of vertical velocity were the best predictors of the number of buzzes. Sensitivity analysis showed that models with segments of 180 s had the best overall predictive performance, with a good area under the curve value (0.78 ± 0.05), high sensitivity (0.93 ± 0.06) and high specificity (0.64 ± 0.14). Models using 180 s segments had a small difference between observed and predicted number of buzzes per dive, with a median of 4 buzzes, representing a difference in predicted buzzes of 30%. CONCLUSIONS: These results demonstrate that it is possible to obtain a fine-scale, accurate index of sperm whale PCAs from time-depth data alone. This work helps leveraging the potential of time-depth data for studying the foraging ecology of sperm whales and the possibility of applying this approach to a wide range of echolocating cetaceans. The development of accurate foraging indices from low-cost, easily accessible TDR data would contribute to democratize this type of research, promote long-term studies of various species in several locations, and enable analyses of historical datasets to investigate changes in cetacean foraging activity.

14.
J Acoust Soc Am ; 131(3): 2325-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22423727

RESUMEN

Mid-frequency and low-frequency sonar systems produce frequency-modulated sweeps which may affect harbor porpoises. To study the effect of sweeps on behavioral responses (specifically "startle" responses, which we define as sudden changes in swimming speed and/or direction), a harbor porpoise in a large pool was exposed to three pairs of sweeps: a 1-2 kHz up-sweep was compared with a 2-1 kHz down-sweep, both with and without harmonics, and a 6-7 kHz up-sweep was compared with a 7-6 kHz down-sweep without harmonics. Sweeps were presented at five spatially averaged received levels (mRLs; 6 dB steps; identical for the up-sweep and down-sweep of each pair). During sweep presentation, startle responses were recorded. There was no difference in the mRLs causing startle responses for up-sweeps and down-sweeps within frequency pairs. For 1-2 kHz sweeps without harmonics, a 50% startle response rate occurred at mRLs of 133 dB re 1 µPa; for 1-2 kHz sweeps with strong harmonics at 99 dB re 1 µPa; for 6-7 kHz sweeps without harmonics at 101 dB re 1 µPa. Low-frequency (1-2 kHz) active naval sonar systems without harmonics can therefore operate at higher source levels than mid-frequency (6-7 kHz) active sonar systems without harmonics, with similar startle effects on porpoises.


Asunto(s)
Umbral Auditivo/fisiología , Phocoena/fisiología , Reflejo de Sobresalto/fisiología , Sonido/efectos adversos , Estimulación Acústica/métodos , Acústica/instrumentación , Animales , Conducta Animal , Masculino , Espectrografía del Sonido
15.
Acta Ethol ; 25(3): 141-154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694552

RESUMEN

Long-finned pilot whales and killer whales are widely distributed across the North Atlantic, but few studies have reported their occurrence in Icelandic coastal waters. Here, we use sightings data from research platforms and whale watching tours in six regions of Iceland from 2007 to 2020 to show that the occurrence of long-finned pilot and killer whales varied with region and season. Killer whales were regularly encountered in the south of Iceland during summer and west of Iceland during winter/spring. Long-finned pilot whales were only seen during the summer and were most often encountered in the south, west, and northwest of Iceland. Long-finned pilot whale occurrence in the south of Iceland appeared to increase during the study period but killer whale occurrence showed no noticeable changes. Long-finned pilot whales were sighted often in the areas that were also frequented by killer whales and interspecific interactions were commonly observed when both species co-occurred. Interactions appeared to be antagonistic, with killer whales often avoiding long-finned pilot whales and sometimes fleeing at high speed, similar to what has been described elsewhere in the North Atlantic. In the majority of interactions observed (68%), killer whales avoided long-finned pilot whales by moving away, but in 28% avoidance was at high speed with both species porpoising. This variability in the type of behavioural responses indicates that interactions may be more complex than previously described. We discuss regional trends in long-finned pilot whale and killer whale sightings and potential drivers of the observed interactions. Supplementary Information: The online version contains supplementary material available at 10.1007/s10211-022-00394-1.

17.
J Acoust Soc Am ; 129(1): 488-95, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21303029

RESUMEN

Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.


Asunto(s)
Percepción Sonora , Phoca/fisiología , Estimulación Acústica , Animales , Audiometría , Umbral Auditivo , Femenino , Inmersión , Proyectos Piloto , Psicoacústica , Tiempo de Reacción , Factores de Tiempo , Grabación en Video
18.
J Acoust Soc Am ; 129(4): 2307-15, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21476686

RESUMEN

Naval sonar systems produce signals which may affect the behavior of harbor porpoises, though their effect may be reduced by ambient noise. To show how natural ambient noise influences the effect of sonar sweeps on porpoises, a porpoise in a pool was exposed to 1-s duration up-sweeps, similar in frequency range (6-7 kHz) to those of existing naval sonar systems. The sweep signals had randomly generated sweep intervals of 3-7 s (duty cycle: 19%). Behavioral parameters during exposure to signals were compared to those during baseline periods. The sessions were conducted under five background noise conditions: the local normal ambient noise and four conditions mimicking the spectra for wind-generated noise at Sea States 2-8. In all conditions, the sweeps caused the porpoise to swim further away from the transducer, surface more often, swim faster, and breathe more forcefully than during the baseline periods. However, the higher the background noise level, the smaller the effects of the sweeps on the surfacing behavior of the porpoise. Therefore, the effects of naval sonar systems on harbor porpoises are determined not only by the received level of the signals and the hearing sensitivity of the animals but also by the background noise.


Asunto(s)
Conducta Animal/fisiología , Audición/fisiología , Ruido/efectos adversos , Enmascaramiento Perceptual/fisiología , Phocoena/fisiología , Estimulación Acústica , Acústica , Comunicación Animal , Animales , Masculino , Ciencia Militar , Viento
19.
J Acoust Soc Am ; 128(5): 3211-22, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21110616

RESUMEN

The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.


Asunto(s)
Umbral Auditivo/fisiología , Condicionamiento Psicológico/fisiología , Modelos Biológicos , Phocoena/fisiología , Percepción de la Altura Tonal/fisiología , Estimulación Acústica/métodos , Animales , Masculino , Biología Marina , Ruido , Psicoacústica , Detección de Señal Psicológica/fisiología
20.
J Acoust Soc Am ; 127(2): 1135-45, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20136234

RESUMEN

The underwater hearing sensitivities of two 2-year-old female harbor seals were quantified in a pool built for acoustic research by using a behavioral psycho-acoustic technique. The animals were trained only to respond when they detected an acoustic signal ("go/no-go" response). Detection thresholds were obtained for pure tone signals (frequencies: 0.2-40 kHz; durations: 0.5-5000 ms, depending on the frequency; 59 frequency-duration combinations). Detection thresholds were quantified by varying the signal amplitude by the 1-up, 1-down staircase method, and were defined as the stimulus levels, resulting in a 50% detection rate. The hearing thresholds of the two seals were similar for all frequencies except for 40 kHz, for which the thresholds differed by, on average, 3.7 dB. There was an inverse relationship between the time constant (tau), derived from an exponential model of temporal integration, and the frequency [log(tau)=2.86-0.94 log(f);tau in ms and f in kHz]. Similarly, the thresholds increased when the pulse was shorter than approximately 780 cycles (independent of the frequency). For pulses shorter than the integration time, the thresholds increased by 9-16 dB per decade reduction in the duration or number of cycles in the pulse. The results of this study suggest that most published hearing thresholds

Asunto(s)
Umbral Auditivo , Ambiente , Audición , Phoca , Estimulación Acústica , Animales , Calibración , Femenino , Pruebas Auditivas , Modelos Biológicos , Ruido , Periodicidad , Factores de Tiempo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA