Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 45(9): 2554-2572, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735161

RESUMEN

Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.


Asunto(s)
Estomas de Plantas , Agua , Sequías , Ecosistema , Grano Comestible , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Suelo/química , Agua/fisiología , Xilema/fisiología
2.
J Plant Physiol ; 296: 154209, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520968

RESUMEN

While there are many theories and a variety of innovative datasets contributing to our understanding of the mechanism generating root pressure in vascular plants, we are still unable to produce a specific cellular mechanism for any species. To discover these mechanisms, we used RNA-Seq to explore differentially expressed genes in three different tissues between individual Zea mays plants expressing root pressure and those producing none. Working from the perspective that roots cells are utililizing a combination of osmotic exudation and hydraulic pressure mechanisms to generate positively-pressured flow of water into the xylem from the soil, we hypothesized that differential expression analysis would yield candidate genes coding for membrane transporters, ion channels, ATPases, and hormones with clear relevance to root pressure generation. In basal stem and coarse root tissue, we observed these classes of differentially expressed genes and more, including a strong cytoskeletal remodeling response. Fine roots displayed remarkably little differential expression relevant to root pressure, leading us to conclude that they either do not contribute to root pressure generation or are constitutively expressing root pressure mechanisms regardless of soil water content.


Asunto(s)
Raíces de Plantas , Zea mays , Zea mays/metabolismo , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Agua/metabolismo , Suelo
3.
Front Plant Sci ; 12: 571072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613594

RESUMEN

Root pressure, also manifested as profusive sap flowing from cut stems, is a phenomenon in some species that has perplexed biologists for much of the last century. It is associated with increased crop production under drought, but its function and regulation remain largely unknown. In this study, we investigated the initiation, mechanisms, and possible adaptive function of root pressure in six genotypes of Sorghum bicolor during a drought experiment in the greenhouse. We observed that root pressure was induced in plants exposed to drought followed by re-watering but possibly inhibited by 100% re-watering in some genotypes. We found that root pressure in drought stressed and re-watered plants was associated with greater ratio of fine: coarse root length and shoot biomass production, indicating a possible role of root allocation in creating root pressure and adaptive benefit of root pressure for shoot biomass production. Using RNA-Seq, we identified gene transcripts that were up- and down-regulated in plants with root pressure expression, focusing on genes for aquaporins, membrane transporters, and ATPases that could regulate inter- and intra-cellular transport of water and ions to generate positive xylem pressure in root tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA