Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132993

RESUMEN

The most common congenital viral infection is CMV, which leads to numerous neurologic disabilities. Using a mouse model of congenital CMV, we previously determined that Ag-specific CD8+ T cells traffic to the brain in a CCR9-dependent manner. The mechanism by which these CD8+ T cells acquire a CCR9-dependent "brain-tropic" phenotype remains unclear. In this study, we identify the key factor that imprints brain homing specificity on CD8+ T cells, the source of production, and the location where CCR9 expression is induced. Specifically, we discovered that CCR9 is induced on CD8+ T cells by retinoic acid-producing CD8α+ dendritic cells in the cervical lymph node postinfection. We found that retinoic acid is important for CD8+ T cells to establish tissue residency in the brain. Collectively, our data expand the role of retinoic acid during infection and mechanistically demonstrate how CD8+ T cells are primed to protect the brain during congenital viral infection.

2.
Proc Natl Acad Sci U S A ; 119(49): e2212548119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442114

RESUMEN

Microbial exposure during development can elicit long-lasting effects on the health of an individual. However, how microbial exposure in early life leads to permanent changes in the immune system is unknown. Here, we show that the microbial environment alters the set point for immune susceptibility by altering the developmental architecture of the CD8+ T cell compartment. In particular, early microbial exposure results in the preferential expansion of highly responsive fetal-derived CD8+ T cells that persist into adulthood and provide the host with enhanced immune protection against intracellular pathogens. Interestingly, microbial education of fetal-derived CD8+ T cells occurs during thymic development rather than in the periphery and involves the acquisition of a more effector-like epigenetic program. Collectively, our results provide a conceptual framework for understanding how microbial colonization in early life leads to lifelong changes in the immune system.


Asunto(s)
Linfocitos T CD8-positivos , Feto , Inmunidad , Diferenciación Celular , Escolaridad , Epigenómica , Feto/inmunología , Feto/microbiología
3.
J Immunol ; 209(12): 2281-2286, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36469843

RESUMEN

CD8+ T lymphocytes infiltrate the brain during congenital CMV infection and promote viral clearance. However, the mechanisms by which CD8+ T cells are recruited to the brain remain unclear. Using a mouse model of congenital CMV, we found a gut-homing chemokine receptor (CCR9) was preferentially expressed in CD8+ T cells localized in the brain postinfection. In the absence of CCR9 or CCL25 (CCR9's ligand) expression, CD8+ T cells failed to migrate to key sites of infection in the brain and protect the host from severe forms of disease. Interestingly, we found that expression of CCR9 on CD8+ T cells was also responsible for spatial temporal positioning of T cells in the brain. Collectively, our data demonstrate that the CMV-infected brain uses a similar mechanism for CD8+ T cell homing as the small intestine.


Asunto(s)
Infecciones por Citomegalovirus , Receptores CCR , Humanos , Receptores CCR/metabolismo , Linfocitos T CD8-positivos/metabolismo , Intestino Delgado/metabolismo , Infecciones por Citomegalovirus/metabolismo , Encéfalo/metabolismo
4.
Sci Immunol ; 9(92): eadf8776, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394230

RESUMEN

CD8+ T cells are classically recognized as adaptive lymphocytes based on their ability to recognize specific foreign antigens and mount memory responses. However, recent studies indicate that some antigen-inexperienced CD8+ T cells can respond to innate cytokines alone in the absence of cognate T cell receptor stimulation, a phenomenon referred to as bystander activation. Here, we demonstrate that neonatal CD8+ T cells undergo a robust and diverse program of bystander activation, which corresponds to enhanced innate-like protection against unrelated pathogens. Using a multi-omics approach, we found that the ability of neonatal CD8+ T cells to respond to innate cytokines derives from their capacity to undergo rapid chromatin remodeling, resulting in the usage of a distinct set of enhancers and transcription factors typically found in innate-like T cells. We observed that the switch between innate and adaptive functions in the CD8+ T cell compartment is mediated by changes in the abundance of distinct subsets of cells. The innate CD8+ T cell subset that predominates in early life was also present in adult mice and humans. Our findings provide support for the layered immune hypothesis and indicate that the CD8+ T cell compartment is more functionally diverse than previously thought.


Asunto(s)
Linfocitos T CD8-positivos , Inmunidad Innata , Humanos , Adulto , Ratones , Animales , Citocinas , Subgrupos de Linfocitos T , Antígenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA