Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Anim Ecol ; 93(3): 267-280, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167802

RESUMEN

Individual body size distributions (ISD) within communities are remarkably consistent across habitats and spatiotemporal scales and can be represented by size spectra, which are described by a power law. The focus of size spectra analysis is to estimate the exponent ( λ ) of the power law. A common application of size spectra studies is to detect anthropogenic pressures. Many methods have been proposed for estimating λ most of which involve binning the data, counting the abundance within bins, and then fitting an ordinary least squares regression in log-log space. However, recent work has shown that binning procedures return biased estimates of λ compared to procedures that directly estimate λ using maximum likelihood estimation (MLE). While it is clear that MLE produces less biased estimates of site-specific λ's, it is less clear how this bias affects the ability to test for changes in λ across space and time, a common question in the ecological literature. Here, we used simulation to compare the ability of two normalised binning methods (equal logarithmic and log2 bins) and MLE to (1) recapture known values of λ , and (2) recapture parameters in a linear regression measuring the change in λ across a hypothetical environmental gradient. We also compared the methods using two previously published body size datasets across a natural temperature gradient and an anthropogenic pollution gradient. Maximum likelihood methods always performed better than common binning methods, which demonstrated consistent bias depending on the simulated values of λ . This bias carried over to the regressions, which were more accurate when λ was estimated using MLE compared to the binning procedures. Additionally, the variance in estimates using MLE methods is markedly reduced when compared to binning methods. The error induced by binning methods can be of similar magnitudes as the variation previously published in experimental and observational studies, bringing into question the effect sizes of previously published results. However, while the methods produced different regression slope estimates, they were in qualitative agreement on the sign of those slopes (i.e. all negative or all positive). Our results provide further support for the direct estimation of λ and its relative variation across environmental gradients using MLE over the more common methods of binning.


Asunto(s)
Ecosistema , Animales , Simulación por Computador , Funciones de Verosimilitud
2.
Glob Chang Biol ; 28(3): 848-858, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34432930

RESUMEN

Parameters describing the negative relationship between abundance and body size within ecological communities provide a summary of many important biological processes. While it is considered to be one of the few consistent patterns in ecology, spatiotemporal variation of this relationship across continental scale temperature gradients is unknown. Using a database of stream communities collected across North America (18-68°N latitude, -4 to 25°C mean annual air temperature) over 3 years, we constructed 160 individual size distribution (ISD) relationships (i.e. abundance size spectra). The exponent parameter describing ISD's decreased (became steeper) with increasing mean annual temperature, with median slopes varying by ~0.2 units across the 29°C temperature gradient. In addition, total community biomass increased with increasing temperatures, contrary with theoretical predictions. Our study suggests conservation of ISD relationships in streams across broad natural environmental gradients. This supports the emerging use of size-spectra deviations as indicators of fundamental changes to the structure and function of ecological communities.


Asunto(s)
Ecología , Ríos , Biomasa , Tamaño Corporal , Ríos/química , Temperatura
3.
Environ Sci Technol ; 52(15): 8848-8857, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979579

RESUMEN

Aquatic insects link aquatic and terrestrial ecosystems through their metamorphosis and subsequent transition from water to land. Chemical stressors in freshwater, such as agricultural contaminants, can potentially disrupt insect life cycles and reduce the number of insects emerging as terrestrial adults, thereby damaging or severing this linkage. Atrazine and selenium, though frequently detected in waterways and often co-occurring, have not been previously studied together in controlled experiments. We conducted a six-week mesocosm experiment to measure the responses of larval and emerging aquatic insects to treatments of atrazine (15 µg/L), selenium (10 µg/L), and a direct combination of the two. Peak adult insect abundance was reduced in all treatments by 35% to 45% relative to the control. Further, cumulative adult emergence in the combined treatment was 33% lower than in the control. However, no reductions in primary production were observed with treatments, and consistent reductions in benthic insect abundance relative to the control were not observed until the end of the experiment, when overall abundance was low. Results suggest that adult insects are more sensitive than larval insects to atrazine and selenium and that the impacts of these contaminants are stronger on the terrestrial than the aquatic ecosystem.


Asunto(s)
Atrazina , Selenio , Animales , Ecosistema , Insectos , Larva
4.
Environ Sci Technol ; 51(4): 2438-2446, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28078890

RESUMEN

Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 µg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ∼0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).


Asunto(s)
Ephemeroptera , Metamorfosis Biológica/efectos de los fármacos , Animales , Larva/efectos de los fármacos , Metales/farmacología , Zinc/farmacología
5.
Ecology ; 97(3): 594-604, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27197387

RESUMEN

Here we synthesize empirical research using meta-analysis to compare how consumer and resource fluxes affect recipient food webs. We tested the following hypotheses: (H1) The direct effects of resource fluxes (bottom-up) should be stronger than the direct effects of consumer fluxes (top-down), because resource fluxes are permanent (do not return to the food web in which they were produced) but consumer fluxes may not be (consumers can leave). (H2) Following H1, the indirect effects should attenuate (weaken) more quickly for consumer fluxes than for resource fluxes due to their direct effects being weaker, (H3) The effects of resource fluxes should be stronger when recipient food webs are in different ecosystems than donor food webs due to differences in elevation that accompany cross-ecosystem food web interfaces, often increasing flux quantity due to gravity, while the effects of consumer fluxes should be stronger when donor and recipient food webs are in the same ecosystem as they should more easily assimilate into the recipient food web. We found no differences in the magnitude of bottom-up and top-down direct effects for resource and consumer fluxes, but top-down direct effects were 122% stronger than top-down indirect effects. Indirect effects of prey and predator fluxes quickly attenuated while indirect effects of non-prey resource and herbivore fluxes did not, as the overall direct effects of prey and predator fluxes were 123% and 163% stronger than their indirect effects, respectively. This result suggests that the magnitude of indirect effects decrease as the trophic level of resource and consumer fluxes increases, and also contrasts with results from studies showing in situ top-down indirect effects are stronger than in situ bottom-up indirect effects. We found that resource and consumer flux effect sizes were similar when they occurred between ecosystems, but when they occurred within ecosystems predator flux effects were 107% stronger than nutrient flux effects. Finally, we found that observational studies had higher effect sizes than manipulative studies. Future research should focus on how resource and consumer fluxes might interact and generate feedbacks in empirical studies of natural food webs, and what ecological factors might affect their relative strength.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales
6.
Oecologia ; 180(4): 1205-11, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26747266

RESUMEN

Predator-prey interactions are often studied entirely within the ecosystem of the predator. However, many prey transition between ecosystems during development, expanding the effects of predators across ecosystems. Prey are often vulnerable to predation during this transition, facing a predator gauntlet as they leave their source ecosystem. As a result of predation during this transition, predators may have stronger effects on prey fluxes to the neighboring ecosystem than on prey densities in the predator's own ecosystem. I used meta-analysis of predator (fish) and prey (invertebrate) interactions in freshwater ecosystems to test the hypothesis that fish have stronger effects on prey flux to the terrestrial ecosystem, by reducing insect emergence biomass, than on prey densities in the aquatic ecosystem, by reducing benthic insect/invertebrate biomass. Fish reduced insect emergence by 39 % on average, more than twice as strong as their reductions of benthic prey (16 % reduction; averages are variance-weighted). In fact, fish effects on benthic prey were not significantly different from zero, but were significant for emergence. These results indicate that predator effects can not only cascade from one ecosystem to another but also that effects can be stronger outside than within the ecosystem of the predator. Failure to account for this may underestimate the effects of predators on prey.


Asunto(s)
Distribución Animal , Peces , Cadena Alimentaria , Agua Dulce , Invertebrados , Conducta Predatoria , Humedales , Animales , Biomasa , Ecosistema , Insectos
7.
Environ Sci Technol ; 48(18): 10957-65, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25136925

RESUMEN

Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.


Asunto(s)
Contaminantes Ambientales/farmacocinética , Cadena Alimentaria , Insectos/química , Metamorfosis Biológica/fisiología , Animales , Isótopos de Carbono/análisis , Isótopos de Carbono/farmacocinética , Contaminantes Ambientales/análisis , Insectos/fisiología , Marcaje Isotópico , Metales Pesados/análisis , Metales Pesados/farmacocinética , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/farmacocinética , Bifenilos Policlorados/análisis , Bifenilos Policlorados/farmacocinética , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Análisis de Regresión
9.
Ecology ; 93(7): 1674-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22919913

RESUMEN

Models of habitat selection often assume that organisms choose habitats based on their intrinsic quality, regardless of the position of these habitats relative to low-quality habitats in the landscape. We created a habitat matrix in which high-quality (predator-free) aquatic habitat patches were positioned adjacent to (predator-associated) or isolated from (control) patches with single or two species of caged predators. After 16 days of colonization, larval insect abundance was reduced by 50% on average in both the predator and predator-associated treatments relative to isolated controls. Effects were largely similar among predator treatments despite variation in number of predator species, predator biomass, and whether predators were native or nonnative. Importantly, the strength of effects did not depend on whether predators were physically present. These results demonstrate that predator cues can cascade with equal strength across ecological boundaries, indirectly altering community assembly via habitat selection in intrinsically high-quality habitats.


Asunto(s)
Daphnia/fisiología , Ecosistema , Insectos/fisiología , Conducta Predatoria , Trucha/fisiología , Animales , Larva
10.
Ecol Evol ; 12(12): e9663, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36582772

RESUMEN

Despite their diversity, global distribution, and apparent effects on host biology, the rules of life that govern variation in microbiomes among host species remain unclear, particularly in freshwater organisms. In this study, we sought to assess whether geographic location, taxonomy (order, family, and genus), or functional feeding group (FFG) designations would best explain differences in the gut microbiome composition among macroinvertebrates sampled across 10 National Ecological Observatory Network's (NEON) freshwater stream sites in the United States. Subsequently, we compared the beta diversity of microbiomes among locations, taxonomy (order, family, and genus), and FFGs in a single statistical model to account for variation within the source microbial community and the types of macroinvertebrates sampled across locations. We determined significant differences in community composition among macroinvertebrate orders, families, genera, and FFGs. Differences in microbiome compositions were underscored by different bacterial ASVs that were differentially abundant among variables (four bacterial ASVs across the 10 NEON sites, 43 ASVs among the macroinvertebrate orders, and 18 bacterial ASVs differing among the five FFGs). Analyses of variations in microbiome composition using the Bray-Curtis distance matric revealed FFGs as the dominant source of variation (mean standard deviation of 0.8), followed by stream site (mean standard deviation of 0.5), and finally family and genus (mean standard deviation of 0.3 each). Our findings revealed a principal role for FFG classification in insect gut microbiome beta diversity with additional roles for geographic distribution and taxonomy.

11.
J Healthc Inform Res ; 5(2): 218-229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33969258

RESUMEN

Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by state health agencies. However, predicting disease and hospitalization dynamics at the state level is complicated by geographic variation in disease parameters. In addition, it is difficult to make forecasts early in a pandemic due to minimal data. Bayesian approaches that allow models to be specified with informed prior information from areas that have already completed a disease curve can serve as prior estimates for areas that are beginning their curve. Here, a Bayesian non-linear regression (Weibull function) was used to forecast cumulative and active COVID-19 hospitalizations for SD, USA, based on data available up to 2020-07-22. As expected, early forecasts were dominated by prior information, which was derived from New York City. Importantly, hospitalization trends differed within South Dakota due to early peaks in an urban area, followed by later peaks in rural areas of the state. Combining these trends led to altered forecasts with relevant policy implications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41666-021-00094-8.

12.
PLoS One ; 16(6): e0252227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086730

RESUMEN

Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.


Asunto(s)
Metilación de ADN/genética , Passeriformes/genética , Pájaros Cantores/genética , Migración Animal/fisiología , Animales , Cruzamiento/métodos , Ecosistema , Femenino , Masculino , Dinámica Poblacional , Reproducción/genética
13.
Ecology ; 101(9): e03102, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32455492

RESUMEN

Understanding what makes food webs stable has long been a goal of ecologists. Topological structure and the distribution and magnitude of interaction strengths in food webs have been shown to confer important stabilizing properties. However, our understanding of how variable species interactions affect food-web structure and stability is still in its infancy. Anthropogenic stress, such as acid mine drainage, is likely to place severe limitations on the food-web structures availabe, due to changes in community composition and body mass distributions. Here, we used mechanistic models to infer food-web structure and quantify stability in streams across a gradient of acid mine drainage. Multiple food webs were iterated for each community based on species pairwise interaction probabilities, in order to incorporate the variability of realistic food-web structure. We found that food-web structure was altered systematically with a 32-fold decrease in the number of links and a twofold increase in connectance across the gradient. Stability generally increased sixfold with increasing acid mine drainage stress, regardless of how interaction strengths were estimated. However, the distribution of the stability measure, s, for some impacted communities separated into clusters of higher and lower magnitude depending on how interaction strengths were estimated. Management and restoration of impacted sites needs to consider their increased stability, as this may have important implications for the recolonization of desirable species. Furthermore, active species introductions may be required to overcome the internal ecological inertia of affected communities.


Asunto(s)
Cadena Alimentaria , Ríos , Modelos Biológicos
14.
Environ Entomol ; 48(1): 127-133, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30629155

RESUMEN

Bacterial endosymbionts, particularly Wolbachia (Rickettsiales: Rickettsiaceae), Rickettsia (Rickettsiales: Rickettsiaceae), and Cardinium (Bacteroidales: Bacteroidaceae), are commonly found in several arthropod groups, including insects. Most estimates of the global infection rate of Wolbachia (52% [95% credible intervals: 44-60]) show that these bacteria infect more than half of all insect species. Other endosymbionts, such as Rickettsia (24% [confidence intervals [CIs] 20-42]) and Cardinium (13% [CIs 13-55]), infect a smaller but still substantial proportion of insect species. In spite of these observations, it is unclear what proportion of individuals within those species are infected. Here, we used published databases to estimate the proportion of individuals that are infected with either Wolbachia, Rickettsia, or Cardinium. We found that the majority (69%) of Wolbachia-infected species have less than half of their individuals infected with Wolbachia, indicating that although the bacterium may be common among species, it is not common within species. The same was true for Rickettsia (81%) and Cardinium (87%). This discrepancy was consistent across orders, in which less than 10% of individuals were typically infected, even though more than 50% of species within orders were infected. For example, according to our model, nearly 50% of beetle (Coleoptera) species are infected with Wolbachia (i.e., contain at least one individual that has tested positive for Wolbachia), but less than 5% of all individuals are infected. These results add to the growing knowledge base about endosymbionts in insects and should guide future sampling efforts and investigations on the role that these bacteria play in populations.


Asunto(s)
Insectos/microbiología , Simbiosis , Animales , Modelos Lineales , Rickettsiales , Wolbachia
15.
Ecol Evol ; 7(4): 1165-1169, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28303186

RESUMEN

Wolbachia is a genus of intracellular bacteria typically found within the reproductive systems of insects that manipulates those systems of their hosts. While current estimates of Wolbachia incidence suggest that it infects approximately half of all arthropod species, these estimates are based almost entirely on terrestrial insects. No systematic survey of Wolbachia in aquatic insects has been performed. To estimate Wolbachia incidence among aquatic insect species, we combined field-collected samples from the Missouri River (251 samples from 58 species) with a global database from previously published surveys. The final database contained 5,598 samples of 2,687 total species (228 aquatic and 2,459 terrestrial). We estimate that 52% (95% CrIs: 44%-60%) of aquatic insect species carry Wolbachia, compared to 60% (58%-63%) of terrestrial insects. Among aquatic insects, infected orders included Odonata, Coleoptera, Trichoptera, Ephemeroptera, Diptera, Hemiptera, and Plecoptera. Incidence was highest within aquatic Diptera and Hemiptera (69%), Odonata (50%), and Coleoptera (53%), and was lowest within Ephemeroptera (13%). These results indicate that Wolbachia is common among aquatic insects, but incidence varies widely across orders and is especially uncertain in those orders with low sample sizes such as Ephemeroptera, Plecoptera, and Trichoptera.

16.
Sci Total Environ ; 609: 1219-1229, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28787796

RESUMEN

Diversity and biomass of aquatic insects decline in metal-rich aquatic environments, but the mechanisms by which insects from such environments cope with potentially toxic metal concentrations to survive through adulthood are less well understood. In this study, we measured Zn concentrations and isotopes in laboratory-reared diatoms and mayflies (Neocloeon triangulifer) from larval through adult stages. The larvae were fed Zn-enriched diatoms, and bio-concentrated Zn by a factor of 2.5-5 relative to the diatoms but maintained the same Zn-isotopic ratio. These results reflect the importance of dietary uptake and the greater rate of uptake relative to excretion or growth. Upon metamorphosis to subimago, Zn concentrations declined by >70%, but isotopically heavy Zn remained in the subimago bodies. We surmised that the loss of isotopically light Zn during metamorphosis was due to the loss of detoxified Zn and retention of metabolically useful Zn. Through the transition from subimago to imago, Zn concentrations and isotope ratios were virtually unchanged. Because the decrease in Zn body concentration and increase in heavier Zn are seen in the subimagos relative to the larvae, the compartmentalization of Zn must be occurring within the larvae. A biodynamic model was constructed, allowing for isotopic fractionation and partitioning of Zn between metabolically essential and detoxified Zn reservoirs within larvae. The model provides a consistent set of rate and fractionation constants that successfully describe the experimental observations. Specifically, metabolically essential Zn is isotopically heavier and is tightly held once assimilated, and excess, isotopically light Zn is sequestered, detoxified, and ultimately lost during the metamorphosis of larvae to subimagos. To our knowledge, this is the first documentation of in vivo isotopic fractionation in insects, offering an improved understanding of the mechanisms and rates by which the N. triangulifer larvae regulate excess Zn in their bodies.


Asunto(s)
Contaminantes Ambientales/metabolismo , Ephemeroptera/fisiología , Zinc/metabolismo , Animales , Fraccionamiento Químico , Inactivación Metabólica , Metamorfosis Biológica
18.
Ecol Evol ; 5(1): 121-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25628869

RESUMEN

Predator community composition can alter habitat quality for prey by changing the strength and direction of consumptive effects. Whether predator community composition also alters prey density via nonconsumptive effects during habitat selection is not well known, but is important for understanding how changes to predator communities will alter prey populations. We tested the hypothesis that predator community composition (presence of caged trout, caged dragonflies, or caged trout + dragonflies) alters colonization of aquatic mesocosms by ovipositing aquatic insects. In a previous experiment in this system, we found a spatial contagion effect, in which insects avoided pools with predators, but only when predator-free pools were isolated (∼5 m away from predator pools). Here, we removed the isolated predator-free pools, allowing us to test whether insects would make fine-scale (∼1 m) oviposition decisions in the absence of preferred isolated pools. We also estimated consumptive effects by allowing predators to feed on colonists for 5 days following colonization. All insects collected after 21 days were dipterans, dominated by Chironomidae. Total colonization, measured as the number of developing larvae after 21 days, was not affected by either predator presence or composition. Consumption was significant in the trout only treatment, reducing larval insect density by 46 ± 37% (mean ± SE). No other predator treatment significantly reduced prey density, although the proportion of chironomid larvae in protective cases increased in response to direct predation from dragonflies, indicating an antipredatory behavioral response. Taken together, these results reveal that predator community composition altered larval survival and behavior, but colonizing females either did not or could not assess these risks across small scales during oviposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA