RESUMEN
OBJECTIVE: Clinical studies suggest that platelet P2Y12 inhibitors reduce mortality from sepsis, although the underlying mechanisms have not been clearly defined in vivo. We hypothesized that P2Y12 inhibitors may improve survival from sepsis by suppressing systemic inflammation and its prothrombotic effects. We therefore determined whether clopidogrel and the novel, more potent P2Y12 inhibitor, ticagrelor, modify these responses in an experimental human model. APPROACH AND RESULTS: We randomized 30 healthy volunteers to ticagrelor (n=10), clopidogrel (n=10), or no antiplatelet medication (controls; n=10). We examined the effect of P2Y12 inhibition on systemic inflammation, which was induced by intravenous injection of Escherichia coli endotoxin. Both P2Y12 inhibitors significantly reduced platelet-monocyte aggregate formation and peak levels of major proinflammatory cytokines, including tumor necrosis factor α, interleukin-6, and chemokine (C-C motif) ligand 2. In contrast to clopidogrel, ticagrelor also significantly reduced peak levels of IL-8 and growth colony-stimulating factor and increased peak levels of the anti-inflammatory cytokine IL-10. In addition, ticagrelor altered leukocyte trafficking. Both P2Y12 inhibitors suppressed D-dimer generation and scanning electron microscopy revealed that ticagrelor also suppressed prothrombotic changes in fibrin clot ultrastructure. CONCLUSIONS: Potent inhibition of multiple inflammatory and prothrombotic mechanisms by P2Y12 inhibitors demonstrates critical importance of platelets as central orchestrators of systemic inflammation induced by bacterial endotoxin. This provides novel mechanistic insight into the lower mortality associated with P2Y12 inhibitors in patients with sepsis in clinical studies.
Asunto(s)
Adenosina/análogos & derivados , Antiinflamatorios/uso terapéutico , Plaquetas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Receptores Purinérgicos P2Y12/sangre , Trombosis/tratamiento farmacológico , Ticlopidina/análogos & derivados , Adenosina/uso terapéutico , Biomarcadores/sangre , Plaquetas/metabolismo , Quimiotaxis de Leucocito/efectos de los fármacos , Clopidogrel , Citocinas/sangre , Endotoxinas , Inglaterra , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Inflamación/sangre , Inflamación/inducido químicamente , Mediadores de Inflamación/sangre , Masculino , Adhesividad Plaquetaria/efectos de los fármacos , Estudios Prospectivos , Trombosis/sangre , Trombosis/inducido químicamente , Ticagrelor , Ticlopidina/uso terapéutico , Factores de Tiempo , Resultado del Tratamiento , Adulto JovenRESUMEN
Introduction: Despite epidemiological associations between community acquired pneumonia (CAP) and myocardial infarction, mechanisms that modify cardiovascular disease during CAP are not well defined. In particular, largely due to a lack of relevant experimental models, the effect of pneumonia on atherosclerotic plaques is unclear. We describe the development of a murine model of the commonest cause of CAP, Streptococcus pneumoniae pneumonia, on a background of established atherosclerosis. We go on to use our model to investigate the effects of pneumococcal pneumonia on atherosclerosis. Methods: C57BL/6J and ApoE-/- mice were fed a high fat diet to promote atherosclerotic plaque formation. Mice were then infected with a range of S. pneumoniae serotypes (1, 4 or 14) with the aim of establishing a model to study atherosclerotic plaque evolution after pneumonia and bacteremia. Laser capture microdissection of plaque macrophages enabled transcriptomic analysis. Results: Intratracheal instillation of S. pneumoniae in mice fed a cholate containing diet resulted in low survival rates following infection, suggestive of increased susceptibility to severe infection. Optimization steps resulted in a final model of male ApoE-/- mice fed a Western diet then infected by intranasal instillation of serotype 4 (TIGR4) S. pneumoniae followed by antibiotic administration. This protocol resulted in high rates of bacteremia (88.9%) and survival (88.5%). Pneumonia resulted in increased aortic sinus plaque macrophage content 2 weeks post pneumonia but not at 8 weeks, and no difference in plaque burden or other plaque vulnerability markers were found at either time point. Microarray and qPCR analysis of plaque macrophages identified downregulation of two E3 ubiquitin ligases, Huwe1 and Itch, following pneumonia. Treatment with atorvastatin failed to alter plaque macrophage content or other plaque features. Discussion: Without antibiotics, ApoE-/- mice fed a high fat diet were highly susceptible to mortality following S. pneumoniae infection. The major infection associated change in plaque morphology was an early increase in plaque macrophages. Our results also hint at a role for the ubiquitin proteasome system in the response to pneumococcal infection in the plaque microenvironment.
Asunto(s)
Aterosclerosis , Bacteriemia , Placa Aterosclerótica , Neumonía Neumocócica , Masculino , Ratones , Animales , Streptococcus pneumoniae , Ratones Endogámicos C57BL , Macrófagos , Apolipoproteínas E/genética , Ubiquitinas , Ratones Noqueados , Modelos Animales de EnfermedadRESUMEN
Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments increase life expectancy but have limited impact on the progressive pulmonary vascular remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery smooth muscle cells (PASMCs). Here, we report that the pro-proliferative and migratory phenotype in PASMCs stimulated with OPG is mediated via the Fas receptor and that treatment with a human antibody targeting OPG can attenuate pulmonary vascular remodelling associated with PAH in multiple rodent models of early and late treatment. We also demonstrate that the therapeutic efficacy of the anti-OPG antibody approach in the presence of standard of care vasodilator therapy is mediated by a reduction in pulmonary vascular remodelling. Targeting OPG with a therapeutic antibody is a potential treatment strategy in PAH.
Asunto(s)
Anticuerpos/administración & dosificación , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Osteoprotegerina/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Osteoprotegerina/genética , Unión Proteica , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Ratas Wistar , Remodelación Vascular/efectos de los fármacosRESUMEN
Studies were undertaken to examine any role for the hepcidin/ferroportin axis in proliferative responses of human pulmonary artery smooth muscle cells (hPASMCs). Entirely novel findings have demonstrated the presence of ferroportin in hPASMCs. Hepcidin treatment caused increased proliferation of these cells most likely by binding ferroportin resulting in internalisation and cellular iron retention. Cellular iron content increased with hepcidin treatment. Stabilisation of ferroportin expression and activity via intervention with the therapeutic monoclonal antibody LY2928057 reversed proliferation and cellular iron accumulation. Additionally, IL-6 treatment was found to enhance proliferation and iron accumulation in hPASMCs; intervention with LY2928057 prevented this response. IL-6 was also found to increase hepcidin transcription and release from hPASMCs suggesting a potential autocrine response. Hepcidin or IL-6 mediated iron accumulation contributes to proliferation in hPASMCs; ferroportin mediated cellular iron excretion limits proliferation. Haemoglobin also caused proliferation of hPASMCs; in other novel findings, CD163, the haemoglobin/haptoglobin receptor, was found on these cells and offers a means for cellular uptake of iron via haemoglobin. Il-6 was also found to modulate CD163 on these cells. These data contribute to a better understanding of how disrupted iron homeostasis may induce vascular remodelling, such as in pulmonary arterial hypertension.
Asunto(s)
Proteínas de Transporte de Catión/biosíntesis , Proliferación Celular , Hepcidinas/biosíntesis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Anticuerpos Monoclonales/farmacología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Interleucina-6/metabolismo , Hierro/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Arteria Pulmonar/citología , Receptores de Superficie Celular/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiologíaRESUMEN
AIMS: Platelets have a fundamental role in atherothrombosis, but their role in early atherogenesis is unclear. The P2Y12 receptor is responsible for amplifying and sustaining platelet activation and P2Y12 inhibition is crucial in modulating the vessel wall response to injury. We therefore examined the role of platelet vs. vessel wall P2Y12 in early atherogenesis and considered the use of P2Y12 antagonists ticagrelor and clopidogrel in modulating this process. METHODS AND RESULTS: ApoE(-/-) and ApoE(-/-)P2Y12 (-/-) male mice underwent bone marrow transplantation and were fed a western diet for 4 weeks before assessing atherosclerotic burden. Compared with ApoE(-/-) controls, platelet P2Y12 deficiency profoundly reduced platelet reactivity but had no effect on atheroma formation, whereas vessel wall P2Y12 deficiency significantly attenuated atheroma in the aortic sinus and brachiocephalic artery (both P < 0.001). ApoE(-/-) and ApoE(-/-)P2Y12 (-/-) male mice fed western diet plus either twice-daily doses of ticagrelor (100 mg/kg) or daily clopidogrel (20 mg/kg) for 4 weeks exhibited no significant reduction in atheroma compared with control mice fed mannitol. Attenuated P-selectin expression confirmed platelet P2Y12 inhibition in drug-treated mice. CONCLUSIONS: Despite its major contribution to platelet reactivity, platelet P2Y12 has no effect on early atheroma formation, whereas vessel wall P2Y12 is important in this process. Ticagrelor and clopidogrel effectively reduced platelet reactivity but were unable to inhibit early atherogenesis, demonstrating that these P2Y12 inhibitors may not be effective in preventing early disease.